• Title/Summary/Keyword: verification core hole

Search Result 5, Processing Time 0.019 seconds

Effect of verification core hole on tip capacity (확인코어공이 현장타설말뚝의 선단지지력에 미치는 영향)

  • Youn, Hee-Jung;Tonon, Fulvio
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.435-441
    • /
    • 2010
  • In this study, numerical simulations were carried out to investigate the effect of verification core hole on the shaft tip capacity. The verification core extreted at shaft tip may deteriorate the shaft tip capacity when the clay shales (Taylor Marl) surrounding the shaft degrades and the empty core hole remains unfilled. Series of finite element analyses were conducted using Mohr-Coulomb model with total stress material parameters that were obtained from laboratory testing. The numerical analyses indicate that the shaft tip capacity does not decrease for most cases, and the maximum reduction does not exceed 5%.

  • PDF

Development of Typical On-Machine Measurement S/W based 3D modeler (3D 모델러 기반의 기상측정 소프트웨어 개발)

  • 김찬우;신장순;윤길상;조명우;박균명;유택인
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1581-1584
    • /
    • 2003
  • This paper proposed efficient manufacturing system using OMM(on-machine measurement) system and OMM operating S/W based 3D modeler. A Developed program connected tool machine with RS232C. It is composed two operating system that touch probe operating and laser displacement sensor operating system. A program for touch probe possible measure considered inspection feature and CAD data. The laser operating program is used inspection for profile. very small hole using installed feature data. This system is applied manufacturing line of mold(cavity, core) also verification of efficiency manufacturing process that production, reduction machining error of each process

  • PDF

Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment (선진시추장비와 시추공벽 영상화 장비를 이용한 TBM 전방 지반평가시스템 개발)

  • Kim, Ki-Seog;Kim, Jong-Hoon;Jeong, Lae-Chul;Lee, In-Mo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.393-401
    • /
    • 2015
  • In the construction of a TBM tunnel, it is very important to acquire accurate information of the excavated rock mass for an efficient and safe work. In this study, we developed the prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment to predict rock mass conditions of the tunnel face ahead. The prediction system consists of the probe drilling equipment, drilled hole imaging equipment and analysis software. The probe drilling equipment has been developed to be applicable to both non-coring and coring. Also the probe drilling equipment can obtain the drilling parameters such as feed pressure, torque pressure, rotation speed, drilling speed and so on. The drilling index is converted to the drilling index RMR through the correlation between a drilling index and core RMR. The developed system verification was carried out through a slope and tunnel field application. From the field application result, the non-coring is four times faster than a coring and the drilling index RMR and core RMR are similar in the distribution range. This system is expected to predict the rock mass conditions of the TBM tunnel face ahead very quickly and efficiently.

On the Evaluation of Construction Standards Based on Seismic Velocities Obtained In-Situ and through Laboratory Rock Tests (현장 및 실내 측정 탄성파 속도에 근거한 암반평가 기준에 대한 고찰)

  • Lee, Kang Nyeong;Park, Yeon Jun
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.230-242
    • /
    • 2017
  • Seismic velocities measured from in-situ tests (n=177) and through rock core samples (n=1,035) are reviewed in light of construction standards, widely used standards as a first-hand approximation of rock classification solely based on seismic velocities. In-situ down hole tests and refraction survey for soft rocks showed seismic velocities of 1,400~2,900 m/s which is faster than those specified in construction standards. For moderate~ hard rocks, in-situ down hole tests and refraction survey showed 2,300~3,800 m/s which roughly corresponds with the range specified in the construction standards. A similar trend is also observed for seismic velocities measured from rock core samples. The observed differences between construction standards and seismic velocities can be explained in two ways. If construction standards are correct the observed differences may be explained with seismic velocities affected by underlying fast velocities and also possibly with selection of intact cores for velocity measurement. Alternatively, construction standards may have intrinsic problems, namely artificial discrete boundaries between soft rocks and moderate rocks, application of foreign standards without consideration of geologic setting and lack of independent verification steps. Therefore, we suggest a carefully designed verification studies from a test site. We also suggest that care must be exercised when applying construction standards for the interpretation and accessment of rock mass properties.

A Study on the Temperature Distribution of Rock Mass at KAERI Underground Research Tunnel: Verification on the Result of Borehole Heater Test (지하처분연구시설(KURT) 내 암반의 온도 분포에 관한 연구 : 시추공히터시험 결과의 검증)

  • Yoon, Chan-Hoon;Choi, Young-Chul;Kwon, Sang-Ki;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.297-307
    • /
    • 2013
  • In this study, the thermal analysis is carried out for a result of borehole heater test using ABAQUS ver 6.10 based on finite element analysis code. Thermal-mechanical rock properties as determined by laboratory tests before the in situ test and characteristics of the atmosphere at the test section are used as the initial condition. When comparing the results of the in situ test and thermal analysis, the temperature of C3 observation hole that is 0.9 m away from the heater showed very similar patterns and figures (about $1.3^{\circ}C$ difference). But the results of the A and B observation hole showed a significant difference around $15^{\circ}C{\sim}20^{\circ}C$. To find the reason for these results, the over-coring is carried out for the A1 and B1 observation holes. As a result of checking the excavated rock core with the naked eye, there is no problem on the number and position of the sensor as the test plan. However the state of cement injection in the observation hole is poor.