• Title/Summary/Keyword: ventilated disk brake

Search Result 33, Processing Time 0.024 seconds

Finite Element Analysis on the Dynamic Behaviors of a Disk-Pad Brake in High-Speed Trains (고속전철용 디스크-패드 브레이크의 동적거동 특성에 관한 유한요소해석)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • Using a coupled thermal-mechanical analysis, the dynamic distortion of the ventilated disk brakes has been presented for a high-speed train. The offset ratio between the maximum and minimum values of the thermal distortions has been analyzed as a function of a braking number. The computed FEM results show that the offset ratios in radial direction are much greater than those of circumferentially distorted components. This means that the axial distortions in radial direction may dominantly produce thermally caused wears and cracks at the rubbing surfaces.

A Study on the Dynamic Behaviors of a Disk Brake for a High-Speed Train (고속전철용 디스크 브레이크의 동적거동 특성에 관한 연구)

  • 조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.276-282
    • /
    • 1999
  • Using a coupled thermal-mechanical analysis, the dynamic distortion of the ventilated disk brakes has been presented for a high-speed train. The offset ratio between the maximum and minimum values of the thermal distortions has been analyzed as a function of a braking number. The computed FEM results show that the offset ratios in radial direction are much greater than those of circumferentially distorted components. This means that the axial distortions in radial direction may dominantly produce thermally caused wears and cracks at the rubbing surfaces.

  • PDF

Finite Element Analysis of Temperature Distribution and Thermally Caused Deformation in Ventilated Disk Brakes

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.150-155
    • /
    • 1995
  • In order to analyze the thermal effects of the rotor models, the finite element technique was used in this study. The length of the hat was investigated as a design parameter. At the start of each brake application the disk surface temperature rapidly increases to a maximum value and then decays due to external cooling and thermal conduction to the hat. The calculated results indicate that the long length of the hat shows the minimum deformation in axial direction, which is related to the thermal problems, coned wear, vibration and noise.

Thermal-Structural Coupled Field Analysis of the Circumferential Pressing Type Brake Disc (원주가압형 브레이크 디스크의 열-구조 연성해석)

  • Kim, Hyeong-Hoon;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.69-74
    • /
    • 2008
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration during a braking. To solve these problems, extensive research for the brake shape has been conducted such as drilling cooling holes on the brake disc, accommodating ventilated holes and etc. In this study, we suggest the circumferential pressing type brake disc in order to improve its cooling performance. In order to compare the cooling-down efficiency between the conventional side-pressing type and the circumferential-pressing type, we adopted the FMVSS 105-77 as thermal analysis conditions and This newly proposed concept has been verified using Thermal-structure Coupled Field Analysis along with comparative analysis with the existing ventilated disk.

An Experimental Study of Thermoelastic Instability in Automotive Ventilated Disk Brake (통풍식 자동차 디스크 브레이크의 열탄성 불안정성에 관한 실험적 연구)

  • 조병수;백병준;박복춘;김종환;김완두
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.10-17
    • /
    • 1997
  • The present study describes an experimental investigation of temperature fluctuations associated with thermal instability. Surface temperatures of brake disk and pad were monitered at various locations in a caliper type brake system during drag braking conditions. It was found that the thermal instability appeared in pad more seriously than in disk. The temperatures at various circumferential positions fluctuate synchronously, whereas the center temperature fluctuates with 180$^{\circ}$ phase difference from the outer and inner radius temperatures. The temperature and amplitude of the temperature perturbations are increased due to the increase of contact area in the center location. It was also found that the thermal instability was dominantly determined by the increase of rotation speed and pressure. And the modification of ventilation path could retard the onset of thermal instability.

A Study on Wear Motor cycle Disk Brake with Ventilated Disk Hole Number (이륜자동차 디스크 브레이크의 방열 홀 수에 따른 마멸량에 관한 연구)

  • Ryu M.R.;Juen H.Y.;Lee S.J.;Kim Y.H.;Park H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.215-216
    • /
    • 2006
  • The effect of manufacturing parameters on friction characteristics of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the frictional factor such as applied load, sliding speed, and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors. In this study, the friction characteristics using design of experiment containing 3 elements were investigated for an optimal condition for the best motorcycle break system employing Full factorial design. From this study, the result was shown that the applied load in frictional factors was the most important, next to sliding speed, number of ventilated disk hole.

  • PDF

Structural and Thermal Analysis of Disk Brake (디스크 브레이크의 구조 및 열 해석)

  • Cho, Jae-Uug;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.211-215
    • /
    • 2010
  • Continuous contraction and expansion of disk brake can be due to friction and temperature difference at repeated sudden braking. As serious vibration at disk is produced, the braking force will be changed ununiformly and braking system can not be stabilized. Temperature and heat flux at disk brake are investigated by structural and thermal analysis in this study. The maximum equivalent stress and displacement are shown respectively at the ventilated hole and the lower part of disk plate. At thermal analysis of initial state, temperature on disk plate is distributed from $95.9^{\circ}C$ to $100^{\circ}C$. The maximum heat flux of $0.0168W/mm^2$ is shown at the inner friction part between disk plate and pad. At thermal analysis of transient state, temperature on disk plate is distributed from $95^{\circ}C$ to $96.5^{\circ}C$ after 100 second. The maximum heat flux of $0.0024W/mm^2$ is also shown at the inner friction part between disk plate and pad. By comparing with initial state, the temperature on disk plate is more uniformly distributed and heat flux is more decreased by 7 times at transient state.

A Study on Thermal Stress Analysis of Motorcycle Disk Brake (모터싸이클 브레이크 디스크의 열응력 해석에 관한 연구)

  • Ryu, Mi-Ra;Moon, Sung-Dong;Park, Heung-Sik
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.308-314
    • /
    • 2008
  • The thermal stress have an effect on the frictional factor such as applied load, sliding speed, sliding distance and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factors on thermal stress of motorcycle break disk. For this, temperature of motorcycle break disk is measured using a disk-on-pad type friction tester with full factorial design containing above 4 elements. and the thermal stress analysis of it was carried out using with ANSYS workbench. From this study, the result was shown that the regression equation which have a trust rate of 95% for thermal stress presumption of motorcycle break disk with frictional factor was composed. It is possible to apply for another automobile parts.

Tribological Analysis on the Contact Behaviors of Disk Brakes Due to Frictional Heatings -Cooling Effects By Vent Holes- (디스크 브레이크의 마찰열 접촉거동에 관한 트라이볼로지적 연구 - 벤트홀의 방열효과를 중심으로 -)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • Using a coupled thermal-mechanical analysis, the thermal distortion of the ventilated disk brakes has been investigated based on the air cooling effects during 15 braking operations. The FEM results show that the bendings and distortions of the disk toward the left side are decreased, but the sinusoidal distortion of the disk rubbing surface along the arc length of the vent hole is highly increased by increasing the convective air cooling effects, which is heavily related to the squeal, wear and micro-thermal crackings at the rubbing surfaces due to uneven dissipation rates of friction heatings.

A Study on Friction Characteristics for Motorcycle Disk Using Taguchi Experimental Design (다꾸지 기법에 의한 이륜자동차 브레이크 디스크의 마찰특성에 관한 연구)

  • Juen, H.Y.;Ryu, M.R.;Lee, S.J.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2006
  • The effect of manufacturing parameters on wear and improve cooling of motorcycle break system was studied using a disk-on-pad type friction tester. Such parameters conditions have an effect on the wear and improve cooling factor such as applied load, sliding speed, frictional time and number of ventilated disk hole. However, it is difficult to know the mutual relation of these factor. In this study, the wear and cooling characteristics using design of experiment containing 4 elements were investigated for an optimal condition for the best motorcycle disk break system employing Taguchi robust experimental design. From this study, the result was shown that vents have an effect on convection area improving more cooling ability and reduced wear of the disk.

  • PDF