• Title/Summary/Keyword: velocity-fields

Search Result 1,082, Processing Time 0.025 seconds

Flow Structure of Conical Vortices Generated on the Roof of a Rectangular Prism (직사각형 프리즘 상면에서 발생되는 원추형 와의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.713-721
    • /
    • 2001
  • Characteristics of the conical vortices on the roof corner of a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and the height of the model was 5.3$\times$10$^3$. The mean, instantaneous velocity vector fields, vorticity fields, and turbulent kinetic energy distribution were measured for two different angles of attack, 30$^{\circ}$and 45$^{\circ}$. The PIV measurements clearly observed not only the conical main vortex and the secondary vortex but also the tertiary vortex which is firstly reported in this paper. Asymmetric formation of the corner vortex for the case of 30$^{\circ}$angle of attack produces relatively the high magnitude of vorticity and turbulent kinetic energy around the bigger vortex which generates the peak suction pressure on the roof. Fairly symmetric features of the roof vortex are observed in the case of 45$^{\circ}$angle of attack, however, the dynamic characteristics are proved to be asymmetric due to the rectangular shape of the roof.

Prediction of aerodynamic force coefficients and flow fields of airfoils using CNN and Encoder-Decoder models (합성곱 신경망과 인코더-디코더 모델들을 이용한 익형의 유체력 계수와 유동장 예측)

  • Janghoon, Seo;Hyun Sik, Yoon;Min Il, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.94-101
    • /
    • 2022
  • The evaluation of the drag and lift as the aerodynamic performance of airfoils is essential. In addition, the analysis of the velocity and pressure fields is needed to support the physical mechanism of the force coefficients of the airfoil. Thus, the present study aims at establishing two different deep learning models to predict force coefficients and flow fields of the airfoil. One is the convolutional neural network (CNN) model to predict drag and lift coefficients of airfoil. Another is the Encoder-Decoder (ED) model to predict pressure distribution and velocity vector field. The images of airfoil section are applied as the input data of both models. Thus, the computational fluid dynamics (CFD) is adopted to form the dataset to training and test of both CNN models. The models are established by the convergence performance for the various hyperparameters. The prediction capability of the established CNN model and ED model is evaluated for the various NACA sections by comparing the true results obtained by the CFD, resulting in the high accurate prediction. It is noted that the predicted results near the leading edge, where the velocity has sharp gradient, reveal relatively lower accuracies. Therefore, the more and high resolved dataset are required to improve the highly nonlinear flow fields.

Analysis of Surface Image Velocity Field without Ground Control Points using Drone Navigation Information (드론의 비행정보를 이용한 지상표정점 없는 표면유속장 분석)

  • Yu, Kwonkyu;Lee, Junhyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.154-162
    • /
    • 2022
  • In this study, a technique for estimating water surface velocity fields in the Universal Transverse Mercator coordinate system using the GPS information of a propagating drone but not ground control points is developed. First, we determine the image direction in which the upper side of an image is directed based on the navigation information of the drone. Subsequently, we assign the start and end frames of the video used and determine the analysis range. Using these two frames, we segment the measurement cross-section into a few subsections at regular intervals. At these subsections, we analyze 30 frame images to create spatio-temporal volumes for calculating the velocity fields. The results of the developed method (propagating drone surface image velocimetry) are compared with those of the existing method (hovering drone surface image velocimetry), and relatively good agreement is indicated between both in terms of the velocity fields.

A Study on the Characteristics of Air flow Fields with Velocity Uniformity in a Wind Tunnel (풍동장치 내 공기 유동장과 속도 균일도 특성에 대한 분석)

  • Han, Seok Jong;Lee, Sang Ho;Lee, Jae Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • Numerical simulations were carried out to analyze the flow characteristics of the wind tunnel. Flow field characteristics with velocity uniformity at the test sections are largely affected by inlet conditions of air flow rate and temperature. Axial average velocity of the flow field inside the test area was almost linearly decreased by 0.026% each 1m. The uniformity distributions of axial velocity showed the highest reduction rate of about 24% between nozzle outlets 1 ~ 2m. In addition, average velocity and the uniformity are increased with air temperature in the wind tunnel due to density variation. The results of this paper are expected to be useful for the basic design of wind tunnel and to be used for efficient design.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (II) - Comparison of Time Mean Flow Fields- - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (II) - 시간평균 유동장 비교 -)

  • Ryu, Byeong-Nam;Kim, Gyeong-Cheon;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1191-1200
    • /
    • 2002
  • The measurements of velocity vectors are made in the near wake(X/d=5.0) of a circular cylinder with serrated fins. Velocity of fluid which flow through fins decreases as increasing fin height and freestream velocity and decreasing fin pitch. Therefore the velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. The discontinuity of the streamwise velocity gradient is observed near the fin edge and causes significant changes in V-component velocity distribution in the near wake. This change attributes to the differences in Strouhal number and entraintment flow behavior. Increased turbulent intensity around a circular cylinder due to the serrated fins and entrainment flow are important factors for the recovery of velocity defect. The widths of velocity and turbulent intensity distribution of fin tubes are wider than those of a circular cylinder. The normalized velocity and turbulent intensity distributions with a hydraulic diameter which is proposed in this paper are in closer agreement with those of a circular cylinder.

Runup and Overtopping Velocity due to Wave Breaking (쇄파에 의한 처오름과 월파유속)

  • Ryu, Yong-Uk;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.6
    • /
    • pp.606-613
    • /
    • 2007
  • This study investigates the behavior of a plunging wave and its associated runup and overtopping through velocity measurements and suggests an empirical formula for overtopping velocities on a structure. The plunging wave breaking in front of the structure generates very bubbly flow fields. For measurements of the two phase flow field of the breaking wave, particle image velocimetry and a modified optical method were employed. The obtained velocity fields were discussed in respect of the process of wave impinging, runup and overtopping. The overtopping velocity distribution is found to have a nonlinear profile showing a maximum magnitude at its front part. The relationship of self-similarity among dimensionless parameters is observed and used to obtain the regression formula to depict the overtopping velocity.

Nominal Wake Measurement for KVLCC2 Model Ship in Regular Head Waves at Fully Loaded Condition (선수 규칙파 중 만재상태의 KVLCC2 모형선 공칭반류 계측)

  • Kim, Ho;Jang, Jinho;Hwang, Seunghyun;Kim, Myoung-Soo;Hayashi, Yoshiki;Toda, Yasuyuki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.371-379
    • /
    • 2016
  • In the ship design process, ship motion and propulsion performance in sea waves became very important issues. Especially, prediction of ship propulsion performance during real operation is an important challenge to ship owners for economic operation in terms of fuel consumption and route-time evaluation. Therefore, it should be considered in the early design stages of the ship. It is thought that the averaged value and fluctuation of effective inflow velocity to the propeller have a great effect on the propulsion performance in waves. However, even for the nominal velocity distribution, very few results have been presented due to some technical difficulties in experiments. In this study, flow measurements near the propeller plane using a stereo PIV system were performed. Phase-averaged flow fields on the propeller plane of a KVLCC2 model ship in waves were measured in the towing tank by using the stereo PIV system and a phase synchronizer with heave motion. The experiment was carried out at fully loaded condition with making surge, heave and pitch motions free at a forward speed corresponding to Fr=0.142 (Re=2.55×106) in various head waves and calm water condition. The phase averaged nominal velocity fields obtained from the measurements are discussed with respect to effects of wave orbital velocity and ship motion. The low velocity region is affected by pressure gradient and ship motion.

The Vertical Distribution of Longitudinal Velocity in Sharp Open Channel Bends (급변만곡부에서 종방향 유속의 연직분포)

  • Lee, Kil-Seong;Kim, Tae-Won;Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1023-1030
    • /
    • 2006
  • The characteristics of the longitudinal velocity in a $180^{\circ}$ constant-radius, recirculating laboratory channel were investigated. Three-dimensional velocity fields were measured using a side-looking ADV. The shortcomings of existing equations for longitudinal velocity are discussed. An eddy viscosity model is adopted in the downstream momentum equation. A mathematical equation was developed to describe the vertical distribution of longitudinal velocity. The comparisons of the longitudinal velocity show generally good agreement. It is found that the curvature change in the curved channel affects the vertical location of maximum velocity and the vertical profile of longitudinal velocity.

Dynamic Stress Intensity Factor $K_{III}$ of Crack Propagating with Constant Velocity in Orthotropic Disk Plate Subjected to Longitudinal Shear Stress (길이방향의 전단응력을 받은 직교이방성 원판에 내재된 외부균열의 등속전파 응력확대계수 $K_{III}$)

  • 최상인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.69-79
    • /
    • 1996
  • Dynamic stress intensity factors are derives when the crack is propagating with constant velocity under longitudinal shear stress in orthotropic disk plate. General stress fields of crack tip propagating with constant velocity and least square method are used to obtain the dynamic stress intensity factor. The dynamic stress intensity factors of GLV/GTV=1(=isotropic material or transversely isotropic material) which is obtained in out study nearly coincides with Chiang's results when mode Ⅲ stress is applied to boundary of isotropic disk. The D.S.I.F. of mode Ⅲ stress is greater when α(=angle of crack propagation direction with fiber direction) is 90° than that when α is 0°. In case of a/D(a:crack length, D:disk diameter)<0. 58, the faster crack propagation velocity, the less D.S.I.F. but when crack propagation velocity arrive on ghear stress wave velocity, the D.S.I.F. but when crack propagation velocity arrive on shear stress wave velocity, the D.S.I.F. unexpectedly increases and decreases to zero.

  • PDF

Measurements of Velocity Profiles Inside a Partially Filled Pipeline Using PIV (PIV를 이용한 비만관내 유속 분포 측정)

  • Choi, Jung-Geun;Sung, Jae-Yong;Lee, Moung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.773-778
    • /
    • 2006
  • Velocity profiles inside a partially filled pipline have been investigated experimentally. To measure the velocity fields, a particle image velocimetry (PIV), which is a recent quantitative visualization technique, is applied. The velocity profile inside a circular pipe is well known, but if the pipe is partially filled, the problem is entirely different in the sense that the velocity distribution is significantly affected by the slope of pipe and filled water level, and so on. In order to calculate exact flow rate in the open channel or partially filled pipeline, three-dimensional velocity distributions at a given cross-sectional area are measured and compared the flow rates with the previously known empirical formula of Manning equation. The results show that the velocity profiles at center plane is considerably different from each other when the slope and water level change. Thus, The three-dimensional velocity profile can be the most plausible estimate for the exact flow rate.

  • PDF