• Title/Summary/Keyword: velocity-analysis function

Search Result 594, Processing Time 0.026 seconds

Correlation among Motor Function and Gait Velocity, and Explanatory Variable of Gait Velocity in Chronic Stroke Survivors

  • Lee, Dong Geon;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.181-188
    • /
    • 2022
  • Objective: The purpose of this study to investigate the correlations among the motor function, balance, and gait velocity and the strength that could explain the variation of gait velocity of chronic stroke survivors. Design: This was a cross-sectional cohort study. Methods: Thirty hemiplegic stroke survivors hospitalized in an inpatient rehabilitation center were participated. The muscle tone of ankle plantarflexor and muscle strength of ankle dorsiflexor were measured respectively with modified Ashworth scale (MAS) and hand-held dynamometer. And the motor recovery and function with Fugl-Meyer assessment (FMA), balance with Berg balance scale (BBS) and timed up and go (TUG) test were measured. Gait velocity was measured with GAITRite. The correlation among motor function, muscle tone, muscle strength, balance, and gait were analyzed. In addition, the strength of the relationship between the response (gait velocity) and the explanatory variables was analyzed. Results: The gait velocity had positive correlations with FMA, muscle strength, and BBS, and negative correlation with MAS and TUG. Regression analysis showed that TUG (𝛽=-0.829) was a major explanatory variable for gait velocity. Conclusions: Our results suggest that gait velocity had correlations with muscle strength, MAS, FMA, BBS, and TUG. The tests and measurements affecting the variation of gait velocity the greatest were TUG, followed by FMA, BBS, muscle strength, and MAS. This study shows that TUG would be a possible assessment tool to determine the variation of gait velocity in stroke rehabilitation.

An Upper bound Analysis of Metal Forming Processes by Nodal Velocity Fields using Shape Function (형상함수를 이용한 절점 속도장애 의한 소성가공 공정의 상계해석)

  • 김영호;배원병;박재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.210-216
    • /
    • 1994
  • The velocity fields can be composed by nodal points using shape function. Forging load and deformed profile are obtained by minimizing total energy consumption rate which is function of unknown velocities at each nodal points. The velocity and stremiline distribution can also be investigated at the deformation profile. The effectiveness of proposed method in this paper is demonstrated by comparing with those of FEM and experiment, that is the results of upset forging problem. Obtained results are compared with FEM and experiment and fairly good agreement is found between them.

  • PDF

A Study on Material Characterization of Semi-Solid Materials (I) -Proposal of New Velocity Field for Upper Bound Analysis of Backward Extrusion- (반용융 재료의 물성치 평가에 관한 연구(I) -후방압출의 상계해석을 위한 동적 가용 속도장의 제안-)

  • 이주영;김낙수
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.364-373
    • /
    • 1999
  • For material characterization of semi-solid materials, backward extrusion process, which has been used in forming of hollow-sectioned products, was analyzed by the upper bound analysis in the current study. The existing kinematically admissible velocity field was applied to steady state at which there was no change in the assumed regions of velocity field. For unsteady state, new velocity field, as a function of dead zone angle, was proposed. Through the whole analysis, fiction between die and workpiece was also considered. It has been studied how the process variables, such as friction factor and punch velocity, and material parameters, such as strength coefficient, strain rate sensitivity could affect on analysis results. Finally, by the comparison with the finite element analysis, the reliability and efficiency of the proposed velocity field were discussed.

  • PDF

Crustal structure beneath broadband seismic station using receiver function (수신함수를 이용한 관측소 하부의 지진파 속도구조)

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.45-49
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-tying, homogeneous layers. The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth, and there are six discontinuity around 2.5km, 6.25km, 12.5km, 22.5km and 27.5km depth, with Moho discontinuity at about 32.5km depth.

  • PDF

Crustal structure beneath broadband seismic station using receiver function (2) (수신함수를 이용한 관측소 하부의 지진파 속도구조 (2))

  • 박윤경;전정수;김성균
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.3-7
    • /
    • 2003
  • The velocity structure beneath the CHNB broadband station is determined by receiver function analysis using by from teleseismic P waveforms. The detailed broadband receiver functions are obtained by stacking method for source-equalized vertical, radial and tangential components of teleseismic P waveforms. A time domain inversion uses the stacked radial receiver function to determine vertical P wave velocity structure beneath the station. The crustal velocity structures beneath the stations are estimated using the receiver function inversion method in the case at the crustal model parameterized by many thin, flat-lying, homogeneous layers. Events divide into 4 groups. four azimuths corresponding to events in group a(southwest), b(south), c(southeast), d(northeast). The result of crust at model inversion shows the crustal velocity structure beneath the CHNB station varies smoothly with increasing depth. The conard discontinuity lies around 18 km and moho discontinuity lies range from 30 to 34 km.

  • PDF

Studies on the Mathematical Analysis of Growth Kinetics in Tobacco (Nicotiana tabacum L. ) I. Growth Curve and Growth Velocity of Total Dry Weight. (담배의 생장반응에 관한 수리해석적 연구 I. 전건물중의 생장곡선과 생장속도)

  • 김용암;변주섭
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 1981
  • This experiment was conducted with three varieties (Hicks, Burley 21, Sohyang) and cropping systems (Improved mulching, Mulching, Non mulching) of NC 2326 to analyze growth kinetics by means of growth function involving its velocity and accelerated velocity. The basic growth data were obtained by harvest method at interval of ten days from transplanting to hundred days and analyzed by , regression equation, determinant of matrix, and differentiation. The plot of total dry weight of leaves, stalk and roots per a plant vs. time forms a sigmoid curve and its function fitted logistic satisfactorily. Tobacco plant grows at an accelerated velocity. And growth velocity, symmetric about an inflection point, is proportional to biomass attained and to the difference between biomass attained and the maximum, and to the decrease according to the biomass. Of varieties and cropping systems, the most maximum velocity was 9.58g per day per plant in mulching cultivation of NC 2326 and maximum accelerated velocity was 264mg per $day^2$ per plant in Burley 21.

  • PDF

Steady Stokes flow analysis using Axial Green's Function Formulation (축그린함수법을 이용한 정상상태의 스톡스유동해석)

  • Kim, D.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.256-258
    • /
    • 2011
  • Using the axial Green's function method for Steady Stokes flows, we introduce a new pressure correction formula to satisfy the incompressibility condition, in which the pressure is related to the integral of the second order derivatives of the velocity. Based on this formula, we propose the iterative method for solving the Stokes flows in complicated domains. Even if the domain is complex, this method maintains the second order of convergence for the velocity.

  • PDF

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

Proposed dynamic p-y curves on a single pile considering shear wave velocity of soil

  • Song, Sumin;Lim, Hyunsung;Park, Seongyong;Jeong, Sangseom
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.353-361
    • /
    • 2022
  • The dynamic behavior of a single pile was investigated by using analytical and numerical studies. The focus of this study was to develop the dynamic p-y curve of a pile for pseudo-static analysis considering the shear wave velocity of the soil by using three-dimensional numerical analyses. Numerical analyses were conducted for a single pile in dry sand under changing conditions such as the shear wave velocity of the soil and the acceleration amplitudes. The proposed dynamic p-y curve is a shape of hyperbolic function that was developed to take into account the influence of the shear wave velocity of soil. The applicability of pseudo-static analysis using the proposed dynamic p-y curve shows good agreement with the general trends observed by dynamic analysis. Therefore, the proposed dynamic p-y curve represents practical improvements for the seismic design of piles.

Nonlinear Adaptive Velocity Controller Design for an Air-breathing Supersonic Engine

  • Park, Jung-Woo;Park, Ik-Soo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • This paper presents an approach on the design of a nonlinear controller to track a reference velocity for an air-breathing supersonic vehicle. The nonlinear control scheme involves an adaptation of propulsive and aerodynamic characteristics in the equations of motion. In this paper, the coefficients of given thrust and drag functions are estimated and they are used to approximate the equations of motion under varying flight conditions. The form of the function of propulsive thrust is extracted from a thrust database which is given by preliminary engine input/output performance analysis. The aerodynamic drag is approximated as a function of angle of attack and fin deflection. The nonlinear controller, designed by using the approximated nonlinear control model equations, provides engine fuel supply command to follow the desired velocity varying with time. On the other hand, the stabilization of altitude, separated from the velocity control scheme, is done by a classical altitude hold autopilot design. Finally, several simulations are performed in order to demonstrate the relevance of the controller design regarding the vehicle.