• 제목/요약/키워드: velocity workspace analysis

검색결과 8건 처리시간 0.018초

다족 보행로봇의 속도작업공간 해석 (A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain)

  • 이지홍;전봉환
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

플랫폼의 운동성을 향상시킨 병렬 기구의 설계 (A design of parallel mechanism to improve the workspace of platform)

  • 유재명;최기훈;김영탁
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1655-1658
    • /
    • 2003
  • The application area of parallel mechanism is limited in spite of many advantages of that because the workspace of platform is a very small. Thus enlargement of workspace is important issue in design of parallel mechanism. In this paper a parallel mechanism design method is described using commercial simulation program. Firstly strokes of the assembled parallel mechanism's active joints are simulated from kinetic simulation mode to get required workspace, Secondly, dynamic parameters(velocity, acceleration, force, moment) are simulated for the gravity, friction and exit load. Finally, workspace of moving platform is displayed and workspace of area is simulated by motion analysis. The results of this paper will help engineer to design parallel mechanism with optimize workspace.

  • PDF

케이싱 오실레이터의 기구학적 조작성 해석 (Kinematic Manipulability Analysis of the Casing Oscillator)

  • 남윤주;박명관
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.904-914
    • /
    • 2004
  • In this paper, input-output velocity and force transmission characteristics of the Casing Oscillator which is a construction machine with 4 degrees of freedom are examined. After the Jacobian matrix is decomposed into the linear part and angular part, the velocity and force transmission characteristics for the linear and angular workspace are easily analyzed and visualized even if the Casing Oscillator has the spatial dimensional workspace with 4 DOF. Regarding the manipulability measure of the Casing Oscillator, the kinematic isotropic index and the manipulability measure which represent the isotropy and volume of the manipulability ellipsoid, respectively, are combined to coincidently consider them with respect to equivalent ranges and fluctuations. A performance of the Casing Oscillator is evaluated by the newly proposed manipulability measures.

4자유도 고속 병렬 로봇의 해석 및 설계 (Analysis and Design of a Novel 4-DOF High-Speed Parallel Robot)

  • 김한성
    • 한국산업융합학회 논문집
    • /
    • 제19권4호
    • /
    • pp.206-215
    • /
    • 2016
  • Delta parallel robots are now widely used for high-speed applications. However, typical Delta robots, such as ABB Flexpicker suffer from rotating axis with passive prismatic joint subjected to critical speed and so requiring careful maintenance. In this paper, a novel 4-DOF high-speed parallel robot with four legs is presented, which consists of three legs with 90 degree arrangement for translational motions and one remaining leg with rack & pinion gears for rotational motion. The inverse kinematics, velocity, acceleration, statics, and inverse dynamics have been analyzed. From the workspace analysis and inverse dynamics simulation for 0.43 sec cycle time, the 4-axis parallel robot prototype with 12kg payload has been designed. In the future research, computed torque control methods will be developed for the prototype.

3 자유도 굴착기 부속 시스템의 기구학적 최적 설계와 기구학/동력학 성능 해석 (Kinematic optimal design and analysis of kinematic/dynamic performances of a 3 degree-of-freedom excavator subsystem)

  • 김희국;한동영;이병주
    • 제어로봇시스템학회논문지
    • /
    • 제3권4호
    • /
    • pp.422-434
    • /
    • 1997
  • In this paper, a two-stage kinematic optimal design for a 3 degree of-freedom (DOF) excavator subsystem, which consists of boom, arm and bucket, is performed. The objective of the first stage is to find the optimal parameters of the joint-actuating mechanisms which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the second stage is to find the optimal link parameters which maximize the isotropic characteristic of the excavator subsystem throughout the workspace. It is illustrated that kinematic/dynamic performances of the kinematically optimized excavator subsystem have improved compared to those of original HE280 excavator, with respect to three performance indices such as maximum load handling capacity, maximum velocity capability, and acceleration capability.

  • PDF

조작지수에 근거한 수중로봇팔의 작업지향적 최적자세에 관한 연구 (A Study on the Task-Oriented Optimal Configuration of an ROV Mounted Manipulator Based on the Manipulability Measure)

  • 김인식;전봉환;이판묵;이지홍
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.48-53
    • /
    • 2004
  • In this paper, the task-oriented optimal configuration in the sense of Velocity and Force manipulability measure of manipulator mounted on ROV is considered. Manipulability is a quantitative measure of manipulator's capability obtained under the limits of joint velocities or torques. The base arrangements and optimal joint configuration of manipulator, that maximize the manipulability measure under the constraints of given task, are investigated. With the two types of base arrangements of manipulator, workspace analysis is carried out to investigate merits and demerits of each arrangement on the view of manipulability measure. To find optimal joint configuration for a given task with each arrangement, the SQP(Sequential Quadratic Programming) optimization are performed. Weighted linear combination of velocity and force manipulability measure is object function for SQP optimization. The kinematic parameters of Dual Orion manipulator which will be mounted on KORDI ROV are used for simulation.

  • PDF

병렬구조 신 압연기의 최적설계 : 조작성 및 제어성능의 최대화 (Optimal Design of a New Rolling Mill Based upon Stewart Platform Manipulator : Maximization of Kinematic Manipulability)

  • 홍금식;이승환;최진태
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.764-775
    • /
    • 2002
  • A kinematic and dynamic optimal design of a new parallel-type rolling mill based upon Stewart platform manipulator is investigated. To provide sufficient degrees-of-freedom in the rolling process and the structural stability of each stand, a parallel manipulator with six legs is considered. The objective of this new parallel-type rolling mill is to permit an integrated control of the strip thickness, strip shape, pair crossing angle, uniform wear of the rolls, and tension of the strip. By splitting the weighted Jacobian matrices Into two parts, the linear velocity, angular velocity, force, and moment transmissivities are analyzed. A manipulability measure, the ratio of the manipulability ellipsoid volume and the condition number of a split Jacobian matrix, is defined. Two kinematic parameters, the radius of the base and the angle between two neighboring Joints, are optimally designed by maximizing the global manipulability measure in the entire workspace. The maximum force needed in the hydraulic actuator is also calculated using the structure determined through the kinematic analysis and the Plucker coordinates. Simulation results are provided.

일반적 3R 링크를 갖는 6각 보행로봇 다리의 보행체적에 대한 해석 (Analysis on the Walking Volumes of a Hexapod System with General 3R Link Legs)

  • 한규범;양창일;백윤수
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2205-2212
    • /
    • 1996
  • In order to move the body of a walking robot translationally, and step over the obstacles, the walking robot must have at least 3 degrees of freedom for each leg. Therefore each leg of the general walking robots can be composed of 3-link system with 3 revolute joints. In this paper, the colsed form of inverse kinimatic solutions is shown for this general 3R linkage. Moreover, in order to have efficient walking volume in rough terrain, the workspace of each log is obtained considering the twist angles and the offsets in D-H parameters. When we design a walking robot, the information of the walking volume is needed for planning desired trajectories of the feet effectively. Appropriate knowledge of the walking volume can also be used to maximize linear or angular velocity of minimize power of stress. However, since it is impossible to obrain the information of walking volume in 3-D space directly from the kinematic equations, the walking volume can be searched through the edge detection algorithm using the triangle tracer with closed from inverse kinematic solutions. In this study, we present the closed form inverse kinematic solutions for 3R linkage model, and the walking volume of 6 legged walking robot which is modeled after the darking bettle, Eleodes obscura sulcipennis, through the method of edge detection for an arbitrary 2 dimensional shape using triangle tracer.