• Title/Summary/Keyword: velocity variations

Search Result 657, Processing Time 0.033 seconds

Ionospheric Responses to the Earthquake in the Gulf of Alaska and the Kusatsu-Shiranesan Volcanic Eruption on 23 January 2018

  • Shahbazi, Anahita;Park, Jihye
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Numerous research revealed a strong association between the ionospheric perturbations and various natural hazards. The ionospheric measurements from Global Navigation Satellite System (GNSS) observations provide the state of electron contents in the ionosphere that contributes to investigate the source events. In this study, two geophysical events occurred on 23 January 2018, the 7.9 Mw earthquake in Alaska and Kusatsu-Shiranesan volcanic eruption in Japan, are examined to characterize the fingerprint of each event in the ionosphere. Firstly, we extracted the Total Electron Content (TEC) from GNSS measurements, then isolated disturbed wave signatures from the TEC measurements that is referred to as a traveling ionospheric disturbance (TID). As TIDs are short-term ionospheric variations, the major trend of GNSS TEC measurements should be properly removed. We applied a natural neighbor interpolation method together with a leave-one-out cross validation technique for detrending. After detrending the TEC, the remaining signals are further enhanced by applying a band-pass filter and TIDs are detected from them. Finally, the detected TIDs are verified as the response of the ionosphere to Kusatsu-Shiranesan volcanic eruption and Gulf of Alaska earthquake which propagated through the ionosphere with an average velocity of 530 m/s and 724 m/s, respectively. In addition, a coherence analysis is conducted to discriminate between the signatures from a volcanic explosion and an earthquake. The analysis reveals the TID waveforms from each single event are highly correlated, while a low correlation is found between the TIDs from the earthquake and explosion. This study supports the claim that different geophysical events induce the distinctive characteristics of TIDs that are detectable by the ionospheric measurements of GNSS.

The Change of Suspended Sediment Concentration in the Seomjin River Estuary during Fall and Winter Months (추계와 동계 섬진강하구 부유퇴적물농도 변화)

  • Lee, Byoung-Kwan;Lee, Su-Woong;Kim, Seok-Yun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.542-550
    • /
    • 2011
  • Changes of suspended sediment concentration in the Seomjin river estuary located in south sea of the Korea peninsula were investigated during the spring tide in autumn (i.e. 25 hours in October) 2000 and winter (i.e. 25 hours in February) 2001. The changes of temperature and salinity during the spring tide in October 2000 showed larger variations than the those in February 2001. During the spring tide in October 2000, currents at bottom layer were observed to be stronger than during the spring tide in February 2001, showing that both of the two periods had ebb currents-predominant tide asymmetries. The suspended sediment concentrations in October 2000 were larger than the those in February 2001. At the time of the maximum of tide currents or after about one hour of the maximum during the autumn months, the suspended sediment turbidity was observed to be maximum. Another observation station at Hadong upstream from the Seomjin river estuary showed about one hour delay in tide phase, Thereby, the suspended sediment concentration showed high turbidity after two hours at bottom and three hours at surface layer, in particular, in October 2000. This results can be explained by the facts that river discharge increased significantly after the summer rainy season, causing also increase of erosion processes by strong current velocity at bottom layer.

Effect of Blade Number Variations on Performance of Micro Gravitational Vortex Turbine in Free Water Surface (자유수면에서 블레이드 수 변화가 마이크로 중력식 와류 수차 성능에 미치는 영향)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.176-183
    • /
    • 2023
  • The aim of this paper is to understand the blade number effect on vortex turbine performance in the cylindrical vortex chamber below the free water surface. Using the same blade profile, the performance of gravitational vortex turbine is tested each with 2, 3, 4, 5 and 6 blades installed at the relative vortex height (y/hv) ranging from 0.065 to 0.417. The obtained results indicate that the rotation, voltage, current and power increase in the relative vortex height of 0.065 and 0.111 when increasing the number of blades at flow velocity of less than 0.7 m/s. The average power of the 5-blade turbine is more than others. The performance of the 4-blade turbine with a 130 mm diameter installed near the orifice is higher than that of the same number of blades with a 220 mm diameter in the vortex chamber.

New Equation on Streamwise Variation of Secondary Flow in Meandering Channels (만곡수로에서 흐름방향에 따른 2차류의 변화량 산정식)

  • Baek, Kyong Oh;Seo, Il Won;Lee, Kyu Whan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.371-378
    • /
    • 2006
  • In this study, a theoretical equation was derived based on Odgaard (1986) and Chang (1988) to reveal the streamwise variation of the secondary flow in meandering channels. The new equation describes the transverse component of the secondary flow as a function of streamwise and vertical directions. To validate the proposed equation, hydraulic experiments were conducted in laboratory meandering channels having different sinuosity. Comparison of experimental results with the proposed equation and an existing equation revealed that the equation was in good agreement with the measured data. However, the existing equation overestimated the transverse velocity. Investigation of the variation of the secondary flow with respect to hydraulic parameters based on the new equation showed that the secondary flow tended to increase as the sinuosity, the roughness, and the aspect ratio became larger. Also, streamwise profile of the secondary flow was sensitive to variations of the roughness and the aspect ratio.

Site response analysis using true coupled constitutive models for liquefaction triggering

  • Cristhian C. Mendoza-Bolanos;Andres Salas-Montoya;Oscar H. Moreno-Torres;Arturo I. Villegas-Andrade
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • This study focused on nonlinear effective stress site response analysis using two coupled constitutive models, that is, the DM model (Dafalias and Manzari 2004), which incorporated a simple plasticity sand model accounting for fabric change effects, and the PMDY03 model (Khosravifar et al. 2018), that is, a 3D model for earthquake-induced liquefaction triggering and postliquefaction response. A detailed parametric study was conducted to validate the effectiveness of nonlinear site response analysis and porewater pressure (PWP) generation through a true coupled formulation for assessing the initiation of liquefaction at ground level. The coupled models demonstrated accurate prediction of liquefaction triggering, which was in line with established empirical liquefaction triggering relations in published databases. Several limitations were identified in the evaluation of liquefaction using the cyclic stress method, despite its widespread implementation for calculating liquefaction triggering. Variations in shear stiffness, represented by changes in shear wave velocity (Vs1), exerted the most significant influence on site response. The study further indicated that substantial differences in response spectra between nonlinear total stress and nonlinear effective stress analyses primarily occurred when liquefaction was triggered or on the verge of being triggered, as shown by excess PWP ratios approaching unity. These differences diminished when liquefaction occurred towards the later stages of intense shaking. The soil response was predominantly influenced by the higher stiffness values present prior to liquefaction. A key contribution of this study was to validate the criteria used to assess the triggering of level-ground liquefaction using true coupled effective-stress constitutive models, while also confirming the reliability of numerical approximations including the PDMY03 and DM models. These models effectively captured the principal characteristics of liquefaction observed in field tests and laboratory experiments.

A Search for Exoplanets around Northern Circumpolar Stars. IX. A Multi-Period Analysis of the M Giant HD 135438

  • Byeong-Cheol Lee;Jae-Rim Koo;Yeon-Ho Choi;Tae-Yang Bang;Beomdu Lim;Myeong-Gu Park;Gwanghui Jeong
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.277-286
    • /
    • 2023
  • It is difficult to distinguish the pure signal produced by an orbiting planetary companion around giant stars from other possible sources, such as stellar spots, pulsations, or certain activities. Since 2003, we have obtained radial (RV) data from evolved stars using the high-resolution, fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at the Bohyunsan Optical Astronomy Observatory (BOAO). Here, we report the results of RV variations in the binary star HD 135438. We found two significant periods: 494.98 d with eccentricity of 0.23 and 8494.1 d with eccentricity of 0.83. Considering orbital stability, it is impossible to have two companions in such close orbits with high eccentricity. To determine the nature of the changes in the RV variability, we analyzed indicators of stellar spot and stellar chromospheric activity to find that there are no signals related to the significant period of 494.98 d. However, we calculated the upper limits of rotation period of the rotational velocity and found this to be 478-536 d. One possible interpretation is that this may be closely related to the rotational modulation of an orbital inclination at 67-90 degrees. The other signal corresponding to the period of 8494.1 d is probably associated with a stellar companion orbiting the giant star. A Markov Chain Monte Carlo (MCMC) simulation considering a single companion indicates that HD 135438 system hosts a stellar companion with 0.57+0.017 -0.017 M with an orbital period of 8498 d.

Stratified features in Paldang lake considering induced density currents and seasonal thermal effect (유입하천 밀도와 계절별 수온을 고려한 팔당호 성층 해석)

  • Choi, Suin;Kim, Dongsu;Seo, Ilwon
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.99-110
    • /
    • 2024
  • Paldang Reservoir serves as a crucial water source for the metropolitan area, and national efforts are focused on water quality management. The region near Paldang Dam, where the water intake facility with the greatest depth is located, experiences vertical stratification during the summer. It has been challenging to definitively classify whether this stratification is caused by density currents or summer temperatures. This study aimed to differentiate and analyze stratification due to density currents and temperature variations at key locations in the Paldang Reservoir through vertical water quality measurements. The results allowed us to distinguish between density current and temperature-induced stratification. We found that density currents are primarily caused by temperature differences among inflowing rivers, with flow velocity significantly influencing their persistence. Additionally, based on a combination of monsoon and non-monsoon season characteristics, we classified Paldang Reservoir into regions with distinct river and lake traits.

Diel Horizontal Migration of Planktonic Copepods in the Surf Zone of Yongil Bay, Korea (영일만 쇄파대에 나타나는 부유성 요각류의 주야 수평이동)

  • Suh Hae-Lip;Yu Ok-Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.4
    • /
    • pp.527-536
    • /
    • 1996
  • The patterns of diel horizontal migration (DHM) of 7 copepod species are compared as part of a general investigation of the zooplankton adaptations to the surf zone habitats. In a sandy shore surf zone of Yongil Bay, 3 sites such as the bottom and surface of 1 m water depth and water's edge are sampled with a sledge net(n=108). The surf zone copepod assemblage is dominated by 7 species; Acartia hudsonica, Fseudodiaptomus marinus, Paracalanus indicus, Calanus sinicus, Oithona similis, Sinocalanus tenellus and Labidocera bipinnata. Threefold variations in copepod abundance are observed within a diel cycle. Abundances of 7 dominant species and total copepods captured in the surface exhibit significant diel differences, but those taken in the bottom are not significantly affected by diel period. It is shown that about $90\%$ of the surf zone copepods performed DHM. The nocturnal high densities of copepods occurred for a neap tide when the offshore winds prevailed, suggesting the animals' ability for horizontal orientation and an active locomotion without invoking passive transportation by currents. Photoreactive behavior of copepods triggered by relative changes in light intensity may be a primary factor inducing DHM by aggregating in the surf zone during the night and spreading out at day; then copepods may reduce encounters with visual predators. In A. hudsonica, ontogenetic variations in timings of DHM are evident. Such variations are likely to minimize intraspecific competition for diets. Data on shoreward migration of copepods indicate that A. hudsonica, P. indicus, O. similis and S. tenellus can maintain swimming velocities of about $20m\;h^{-1}$ for durations of more than an hour. Our observations of strong diel difference in abundances point out the need for both day and night samplings in surf zone habitats, if the importance of these habitats to planktonic copepods are to be fully understood.

  • PDF

Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system (박동 혈액 순환 모의 시스템에서 시간 동기화된 혈압 및 혈액의 초음파 영상 측정 및 주기적 분석)

  • Min, Soohong;Jin, Changzhu;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.361-369
    • /
    • 2017
  • Hemodynamic information in the carotid artery bifurcation is very important for understanding the development and progression mechanisms of cerebrovascular disease and for its early diagnosis and prediction of the progress. In this paper, we constructed a mock pulsatile blood circulation system using an anthropomorphic elastic vessel of the carotid artery bifurcation and ex vivo pig blood to acquire ultrasound images from blood and vessels synchronized with internal pressure while controlling the blood flow. Echogenicity, blood flow velocity, and blood vessel wall motion from the ultrasound images, and internal blood pressure were extracted over a cycle averaged from five cycles when the pulsatile pump rates are 20 r/min, 40 r/min, and 60 r/min. As a result, respectively, the peak systolic blood flow velocities were 20 cm/s, 25 cm/s, and 40 cm/s, the blood pressure differences were 30 mmHg, 70 mmHg, and 85 mmHg, the arterial walls were expanded to 0.05 mm, 0.15 mm, and 0.25 mm. Time-delayed cyclic variation of echogenicity compared to blood flow and pressure was observed, but the variation was minimal at 20 r/min. Time-synchronized cyclic variations of these parameters are important information for accurate input parameters and validation of the computational hemodynamic experiments which will provide useful information for the development and progress mechanisms of carotid artery stenosis.

MONITORING OBSERVATIONS OF H2O AND SiO MASERS TOWARD POST-AGB STARS

  • Kim, Jaeheon;Cho, Se-Hyung;Yoon, Dong-Hwan
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.261-288
    • /
    • 2016
  • We present the results of simultaneous monitoring observations of $H_2O$ $6_{1,6}-5_{2,3}$ (22GHz) and SiO J=1-0, 2-1, 3-2 maser lines (43, 86, 129GHz) toward five post-AGB (candidate) stars, using the 21-m single-dish telescopes of the Korean VLBI Network. Depending on the target objects, 7 - 11 epochs of data were obtained. We detected both $H_2O$ and SiO maser lines from four sources: OH16.1-0.3, OH38.10-0.13, OH65.5+1.3, and IRAS 19312+1950. We could not detect $H_2O$ maser emission toward OH13.1+5.1 between the late OH/IR and post-AGB stage. The detected $H_2O$ masers show typical double-peaked line profiles. The SiO masers from four sources, except IRAS 19312+1950, show the peaks around the stellar velocity as a single peak, whereas the SiO masers from IRAS 19312+1950 occur above the red peak of the $H_2O$ maser. We analyzed the properties of detected maser lines, and investigated their evolutionary state through comparison with the full widths at zero power. The distribution of observed target sources was also investigated in the IRAS two-color diagram in relation with the evolutionary stage of post-AGB stars. From our analyses, the evolutionary sequence of observed sources is suggested as OH65.5+1.3${\rightarrow}$OH13.1+5.1${\rightarrow}$OH16.1-0.3${\rightarrow}$OH38.10-0.13, except for IRAS 19312+1950. In addition, OH13.1+5.1 from which the $H_2O$ maser has not been detected is suggested to be on the gateway toward the post-AGB stage. With respect to the enigmatic object, IRAS 19312+1950, we could not clearly figure out its nature. To properly explain the unusual phenomena of SiO and $H_2O$ masers, it is essential to establish the relative locations and spatial distributions of two masers using VLBI technique. We also include the $1.2-160{\mu}m$ spectral energy distribution using photometric data from the following surveys: 2MASS, WISE, MSX, IRAS, and AKARI (IRC and FIS). In addition, from the IRAS LRS spectra, we found that the depth of silicate absorption features shows significant variations depending on the evolutionary sequence, associated with the termination of AGB phase mass-loss.