• Title/Summary/Keyword: velocity variations

Search Result 657, Processing Time 0.034 seconds

Measurement of mass Transfer Coefficients for Adsorptive Bulk Gas Separation with Velocity Variations (기체속도가 변하는 벌크기체의 흡착공정에서 물질전달계수의 측정)

  • Min, Jun-Ho;Choi, Min-Ho;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.310-318
    • /
    • 1999
  • The concentration breakthrough curves were examined to predict mass transfer coefficients of nitrogen and oxygen in adsorption column for design data of PSA process. Experimental breakthrough curves for bulk gas flow were compared with theoretical simulation results. For quantitative analysis of the adsorption, coupled Langmuir isotherm was considered and LDF model was used to describe the mass transfer effect. In the experimental and theoretical results, it was found that mass transfer coefficient was not affected by flow rate but strongly affected by pressure. As a result of this tendency, mass transfer resistance in this system was proved to belong to the macropore diffusion controlling region and the mass transfer coefficients could be expressed by exponential functions of pressure change. The mass transfer coefficients for one component, nitrogen or oxygen, were successfully applied to breakthrough curves for bulk mixed gases. The experimental curves were reasonably in consistent with the theoretical curves and the error time was less than 5 percent.

  • PDF

Changes in Acceleration at the Upper Thigh and Ankle with Variations in Gait Speed and Walkway Slope (보행 속도와 보행로 경사에 따른 대퇴상부와 발목상부에서의 가속도의 변화)

  • Kwon, Yu-Ri;Kim, Ji-Won;Kang, Dong-Won;Tack, Gye-Rae;Eom, Gwang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The purpose of this study was to investigate the effect of gait speed and walkway slope on the body acceleration, for the future validation of using an accelerometer in the estimation of energy consumption. Ten young healthy subjects with accelerometers on the upper thigh and ankle walked on a treadmill at 9 conditions(three speeds ${\times}$ three slopes) for 5 minutes. Acceleration signals of four directions, i.e. anterior-posterior(AP), medio-lateral(ML), superior-inferior(SI) and vector sum(VS) directions, of each sensor were measured, and root means squared(RMS) values of them were used as analysis variables. As statistical analysis, repeated measure two-way ANOVA was performed for RMS accelerations at each attachment sites, with slope and velocity as independent factors. At both the upper thigh and ankle, RMS acceleration of all directions were affected by gait velocities(p<.001) showing greater accelerations for higher velocities. Contrary to expectations, no slope effect existed in RMS accelerations at hip. Moreover, RMS acceleraion at ankle decreased with slope in SI and VS directions(p<.01). These results suggests that RMS acceleration cannot reflect the change in physical activity due to the change in walkway slope.

Establishing Optimal Germination for Stored Rheum palmatum L. Seeds (장엽대황 종자의 최적 발아조건 확립)

  • Yoo, Ji-Hye;Hwang, In-Seong;Seong, Eun-Soo;Lee, Jae-Geun;Kim, Nam-Jun;Kim, Myong-Jo;Lee, Jung-Dae;Ham, Jin-Kwan;Ahn, Young-Sup;An, Tae-Jin;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.2
    • /
    • pp.85-88
    • /
    • 2012
  • This study evaluated the germination rate of $Rheum$ $palmatum$ L. in Korea as affected by storage temperature, germination temperature, and a soaking treatment. The germination rate of $R.$ $palmatum$ L. stored at various conditions for 8 weeks was > 60%. The highest germination rate occurred at $25^{\circ}C$. The germination point of $R.$ $palmatum$ L. with soaking was started 1 day after application, and non soaked seeds germinated in 2 days. When $R.$ $palmatum$ L. was soaked with water, the germination rate was lower, but mean germination velocity was the highest. These results may help our understanding of variations in germination characteristics for seeds treated under different germination conditions.

Formative characteristics of 3D printing fashion from the perspective of mechanic aesthetic (기계 미학적 관점에서 살펴본 3D Printing 패션의 조형적 특성)

  • Kim, Young-Sam;Lee, Jin-Ah;Kim, Jang-Hyeon;Jun, Yuh-Sun
    • The Research Journal of the Costume Culture
    • /
    • v.23 no.2
    • /
    • pp.294-309
    • /
    • 2015
  • This study aims to clarify the aesthetic values between emotion of human and expression of technology in contemporary fashion as it analyzes formative characteristics of related cases in fashion based on principles of 3D Printing technology and the viewpoint of mechanic aesthetics. The conclusions of this study are as follows. First, 3D Printing fashion is not only expressed diverse variations by its principles of formative methods, materials and properties, but also changes of silhouette by applying system of designers. Second, general characteristics of 3D Printing fashion is represented by various applications in SLS system, and it can be specifically explained application to a portion of clothing, decorative roles of clothing, complicated pattern making through crossing fabrics using 3D scanner and displaying a certain object changing fashion styles, and so forth. Third, the formative characteristics of 3D Printing fashion from the perspective of mechanic aesthetics is as follows. It can be analyzed as the integration of metaphysical values through compared symbolization of natural feature and technical evolution, partial dynamics and interactive velocity-based, formative combinations for abstract expression using architectural components, cosmos images and substantialized structures through images of organic space interacted human shapes. As the mention above, 3D Printing technology can creative a diverse area of fashion, and express images of new technological fashion through various works with continuous development of techniques.

A Study on Physical Characteristic of Ground water and Sediment Property in Intertidal Flat of Nakdong River Estuary (낙동강 하구 조간대 지하수의 물리적 특성 및 퇴적물 성상에 관한 연구)

  • Kim, Heon-Tae;Kim, Kyunghoi;Ryu, Sung-Hoon;Lee, In-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.467-473
    • /
    • 2015
  • In the present study, we investigated the physical characteristics of ground water behaviors and sediment properties in intertidal flat of Nakdong River Estuary. Variations in level and temperature of the groundwater depended on tides. And increase of river discharge led to increase in groundwater level and decrease in ground salinity at a depth of several ten cm. Difference in permeability of the intertidal flat sediments due to content of fine fraction affect velocity of groundwtaer level decrease at low tide. Furthermore, enhancement of groundwater flow due to the increase in permeability leaded to decrease of fine fraction in the intertidal flat sediments.

Numerical Study on Turbulent Flow Inside a Channel with an Extended Chamber (난류 경계층에 놓인 공동 내부유동에 관한 수치해석적 연구)

  • Lee, Young-Tae;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.925-931
    • /
    • 2010
  • The paper describes a Large Eddy Simulation (LES) study of turbulent flow around a cavity. A series of three-dimensional cavities placed in a turbulent boundary layer are simulated at a Reynolds number of $1.0{\times}10^5$ by considering U and h, which represent the velocity at the top and the depth of the cavity, respectively. In order to obtain the appropriate solution for the filtered Navier-Stokes equation for incompressible flow, the computational mesh forms dense close to the wall of the cavity but relatively coarse away from the wall; this helps reduce computation cost and ensure rapid convergence. The Boussinesq hypothesis is employed in the subgrid-scale turbulence model. In order to determine the subgrid-scale turbulent viscosity, the Smagorinsky-Lilly SGS model is applied and the CFL number for time marching is set as 1.0. The results show the flow variations inside cavities of different sizes and shapes.

LES Studies on the Combustion Instability with Inlet Configurations in a Model Gas Turbine Combustor (모형 가스터빈 연소기의 입구 형상변화에 따른 연소 불안정성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.342-350
    • /
    • 2008
  • The effects of combustion instability on flow structure and flame dynamics with the inlet configurations in a model gas turbine combustor were investigated using large eddy simulation (LES). A G-equation flamelet model was employed to simulate the unsteady flame behaviors. As a result of mean flow field, the change of divergent half angle($\alpha$) at combustor inlet results in variations in the size and shape of the central toroidal recirculation (CTRZ) as well as the flame length by changing corner recirculation zone (CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than those of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is shorter than other cases, while the case of ${\alpha}=30^{\circ}$ yields the longest flame length due to the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it was identified that the case of ${\alpha}=45^{\circ}$ shows the largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, compared to that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons were discussed in detail through the analysis of unsteady phenomena related to recirculation zone and flame surface. Finally the effects of flame-acoustic interaction were evaluated using local Rayleigh parameter.

Experimental Study on the Cooling Characteristics of an Environmental Control System for Avionic Reconnaissance Equipment (항공정찰장비용 환경제어시스템의 냉각특성에 관한 실험적 연구)

  • Kang, Hoon;Park, Hyung-Pil;Lee, Eung-Chan;Kim, Yong-Chan;Chi, Yong-Nam;Choi, Hee-Ju;Byeon, Young-Man;Kim, Young-Jin;Oh, Kwang-Yoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.9
    • /
    • pp.519-526
    • /
    • 2009
  • Environmental control system is adopted to control the thermal load from the avionic equipment in the reconnaissance pod which is mounted under a fighter aircraft, undergoing large and rapid environmental changes with the variations of flight altitude and velocity. In this study, an environmental control system was designed and built by adopting vapor compression cycle using R-124. The cooling performance characteristics of the system were measured varying operating parameters: thermal load in the pod, air mass flow rate through evaporator, condenser inlet air temperature, and air mass flow rate through condenser. The effects of the experimental parameters on the system performance were analyzed based on the experimental results. The problems on the designed system were also analyzed and the solutions were suggested to improve system efficiency and to obtain stable operation.

Bacterial Abundance and Heterotrophic Activity in Sudong Stream (수동천에서의 세균의 분포와 생리적 활성도)

  • 최성찬;김상종
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.332-338
    • /
    • 1988
  • The density of heterotrophic bacterial population and heterotrophic activity were measured at monthly interval from March, 1986 to March, 1987 at four sites in the Sudong Stream, a tributary of North Han River. Total bacterial numbers and maximum uptake velocity ($V_{max}$) of glucose ranged as 0.8-$25.2\times 10^{5}$ cells/ml, 0.0006-24.39.$\mu$gC/1/hr, respectively. $V_{max}$ of glucose showed marked seasonal periodicity, with highest values in summer. But density of viable bacteria varied considerably, with no definite seasonal pattern. At the nucontaminated site which located in upstream, heterotrophic bacterial population and activities were relatively low, and small variations were observed downstream flowing except the site where animal originated sewage inputs occurred. And this large input of allochthonous materials and bacteria was an important factor for the stream condition.

  • PDF

Analyzing Spatio-Temporal Variation of Groundwater Recharge in Jeju Island by using a Convolution Method (컨벌루션 기법을 이용한 제주도 지하수 함양량의 시공간적 변화 분석)

  • Shin, Kyung-Hee;Koo, Min-Ho;Chung, Il-Moon;Kim, Nam-Won;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.625-635
    • /
    • 2014
  • Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.