• Title/Summary/Keyword: velocity variations

Search Result 657, Processing Time 0.035 seconds

Use of Piezoelectric Effect in Portable Loadless Wind-Power Source for Ubiquitous Sensor Networks (유비쿼터스 센서네트워크를 위한 압전효과 기반의 무구속 휴대용 풍력 전원 장치)

  • Chang, Hyung-Kwan;Kim, Dae-Joong;Park, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.623-628
    • /
    • 2010
  • This paper presents a wind-power-driven portable power source based on piezoelectric effect. Positive piezoelectric effect is one of efficient and widely used mechanisms for converting mechanical energy to electrical energy. However, for this mechanism, a periodic mechanical stress with a high frequency, as in the case of AC, has to be exerted; such stress cannot be exerted by the natural wind in the environment. The natural wind has a constant velocity with slow and irregular variations, as in the case of DC. In this paper, we propose a novel and simple mechanism to convert mechanical energy into electrical energy. The DC-like wind flow is passed through a propeller to convert it to an AC-like wind flow; the resultant AC-like periodic flow induces vibrations in a piezoelectric cantilever, thereby, generating electrical power. This system is expected to be one of practical solutions for wireless energy supply to ubiquitous sensor networks (USNs).

SUNSHINE, EARTHSHINE AND CLIMATE CHANGE I. ORIGIN OF, AND LIMITS ON SOLAR VARIABILITY

  • GOODE PHILIP R.;DZIEMBOWSKI W. A.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.75-81
    • /
    • 2003
  • Changes in the earth's climate depend on changes in the net sunlight reaching us. The net depends on the sun's output and earth's reflectance, or albedo. Here we develop the limits on the changes in the sun's output in historical times based on the physics of the origin of solar cycle changes. Many have suggested that the sun's output could have been $0.5\%$ less during the Maunder minimum, whereas the variation over the solar cycle is only about $0.1\%$. The frequencies of solar oscillations (f- and p-modes) evolve through the solar cycle, and provide the most exact measure of the cycle-dependent changes in the sun. But precisely what are they probing? The changes in the sun's output, structure and oscillation frequencies are driven by some combination of changes in the magnetic field, thermal structure and velocity field. It has been unclear what is the precise combination of the three. One way or another, this thorny issue rests on an understanding of the response of the solar structure to increased magnetic field, but this is complicated. Thus, we do not understand the origin of the sun's irradiance increase with increasing magnetic activity. Until recently, it seemed that an unphysically large magnetic field change was required to account for the frequency evolution during the cycle. However, the problem seems to have been solved (Dziembowski, Goode & Schou 2001) using f-mode data on size variations of the sun. From this and the work of Dziembowski & Goode (2003), we suggest that in historical times the sun couldn't be much dimmer than it is at activity minimum.

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel 7sing Piezoeleetric Thin Film Sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • v.15 no.2
    • /
    • pp.11-17
    • /
    • 2002
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF (polyvinylidene fluoride) film sensors are used for monitoring impact damage in Gr/Ep composite panels. Both PVDF film sensors and strain gages are attached to the surface of Gr/Ep specimens. A series of impact tests at various impact energy by changing impact mass the height are performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as indentation, matrix cracking, and delamination, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

Analysis of Output Irregularity from the Transient Behavior of Bundle in a Flow Field (유동계 내 집속체의 과도적 거동에 따른 출력 불균제 해석)

  • Huh Y.;Kim J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.965-968
    • /
    • 2005
  • Roll drafting operation causes variations in the linear density of bundles because the bundle flow cannot be controlled completely by roll pairs. Defects occurring in this operation bring about many problems successively in the next processes. In this paper, we attempt to analyze the draft dynamics and the linear density irregularity based on the governing equation of a bundle motion that has been suggested in our previous studies. For analyzing the dynamic characteristics of the roll drafting operation, it is indispensable to investigate a transient state in time domain before the bundle flux reaches a steady state. However, since governing equations of bundle flow consisting of continuity and motion equations turn out to be nonlinear, and coupled between variables, the solutions for a transient state cannot be obtained by an analytical method. Therefore, we use the Finite Difference Method(FDM), particularly, the FTBS(Forward-Time Backward-Space) difference method. Then, the total equations system yields to an algebraic equations system and is solved under given initial and boundary conditions in an iterative fashion. From the simulation results, we confirm that state variables show different behavior in the transient state; e.g., the velocity distribution in the flow field changes more quickly the linear density distribution. During a transient flow in a drafting zone, the output irregularity is influenced differently by the disturbances, e.g., the variation in input bundle thickness, the drafting speed, and the draft ratio.

  • PDF

Seasonal and Locational Concentrations of Particulate Air Pollutants in Indoor Air of Public Facilities in Taegu Area (대구지역 공중위생법 규제대상시설의 실내공기중 입자상 오염물질의 계절별 및 지점별 농도분포 특성)

  • 백성옥;송희봉
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.163-176
    • /
    • 1998
  • In this study, airborne particle samples were obtained to determine the concentrations of particulate air pollutants in indoor and outdoor air of public facilities in Taegu area. Total of 12 public facilities, regulated by the Public Sanitary Law, were selected as sampling sites, which include three underground arcades, one railway and two bus terminals, three general hospitals, and three department stores. In each place, sampling was carried out seasonally during the period of October 1994 to July 1995, and four samples per each site per season were collected both indoors and outdoors simultaneously. After determination of suspended particulate matter (SPM) mass concentrations, the particle samples were divided into two parts for subsequent chemical analysis: one for the analysis of trace elements and the other for water soluble ions. Seasonal levels of SPM appeared to be the highest in spring and the lowest in summer both indoors and outdoors, while locational variations of highest in statioyterminals, and lowest in department stores . SPM concentrations indoors and outdoors did not show any significant differences each other in most places . However, there were significant correlations between indoor and outdoor levels of SPM and other chemical species . These results indicates that indoor SPM levels are likely to be significantly affected by outdoor sources in many places. The most significant source of SPM was estimated to be the resuspension of soil/road dust both indoors and outdoors . The concentrations of toxic heavy metals (Pb, Cd, Cr, Cu) in underground arcades appeared to be very much lower than the established air quality guidelines for underground environments. In addition, it is likely that micro-environmental parameters such as temperature, humidity, and air velocity, play a less significant role than outdoor air quality as a factor affecting the levels of particulate pollutants in indoor environments of public facilities in Taegu area.

  • PDF

Variation of the Physical-microstructural Properties of Sandstone and Shale Caused by CO2 Reaction in High Pressure Condition (고압 이산화탄소 반응에 의한 사암과 셰일의 물리적-미세구조적 변화)

  • Park, Jihwan;Son, Jin;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2016
  • Underground $CO_2$ storage technology is one of the most effective methods to reduce atmospheric $CO_2$. In this study, $CO_2$ storage condition was simulated in the laboratory. Sandstone and shale specimens were saturated in 1M NaCl and were reacted at $45^{\circ}C$, 10 atm for 4 weeks. The physical and microstructural properties of rock specimens were measured. Variations on physical properties of shale specimens were bigger than those of sandstone specimens, such as volume, density, elastic wave velocity, Poisson's ratio and Young's modulus. Microstructure were analyzed using X-ray computed tomography. Total number of pores were decreased, and average volume, average area and average equivalent diameter of each pore were changed after $CO_2$ reaction. Swelling and leakage of clay mineral caused by $CO_2$-mineral reaction were the reason of changes. The results of this study can be applied to predict the physical and microstructural changes in underground $CO_2$ storage condition.

Investigation of Residual Stress Distributions of Induction Heating Bended Austenitic Stainless Steel (316 Series) Piping (유도 가열 굽힘된 316 계열 오스테나이트 스테인리스 강 배관의 잔류응력 분포 고찰)

  • Kim, Jong Sung;Kim, Kyoung Soo;Oh, Young Jin;Chang, Hyun Young;Park, Heung Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.809-815
    • /
    • 2014
  • The induction heating bending process, which has been recently applied to nuclear piping, can generate residual stresses due to thermomechanical mechanism during the process. This residual stress is one of the crack driving forces that have important effects on crack initiation and propagation. However, previous studies have focused only on geometric shape variations such as the change in thickness and ovality. Moreover, very few studies are available on the effects of process variables on residual stresses. This study investigated the effects of process variables on the residual stress distributions of induction heating bended austenitic stainless steel (316 series) piping using parametric finite element analysis. The results indicated that the heat generation rate and feed velocity have significant effects on the residual stresses whereas the moment and bending angle have insignificant effects.

Effects of Geometric Configuration on the Vibro-acoustic Characteristics of Radial Vibration of an Annular Disc (환형 디스크 형상이 래디얼 진동에 의한 음향방사 특성에 미치는 영향)

  • Lee, Hyeong-Ill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.596-604
    • /
    • 2007
  • This article investigates the effects of geometric configuration on the vibro-acoustic characteristics of in-plane vibration of a thick annular disc. Disc thickness and outer radius for a given inner radius are selected as independent variables having reasonable ranges. Variations in structural eigensolutions for radial modes are investigated using pre-developed analytical method. Based on these data, far-field sound pressure distributions due to the modal vibrations for a given geometry are also calculated using an analytical solution. Modal sound powers and radiation efficiencies are calculated from the far-field sound pressure distributions and vibratory velocity distributions on the radial surfaces. Based on the results explained above, the geometric configuration that minimizes modal sound radiations in a given frequency range is determined. Finally sound power and radiation efficiency spectra for a unit harmonic force from the selected geometric configuration are obtained from structural and acoustic modal data using the modal expansion technique. Multi-modal sound radiations of the optimized disc that are obtained using proposed analytical methods are confirmed with numerical results. Using the procedure introduced in this article, sound radiation due to in-plane modes within a specific frequency range can be minimized by the disc geometry modifications in a comprehensive and convenient manner.

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF

Atmosphere-forest Exchange of Ammoniacal Nitrogen in a Subalpine Deciduous Forest in Central Japan during a Summer Week

  • Hayashi, Kentaro;Matsuda, Kazuhide;Takahashi, Akira;Nakaya, Ko
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.134-143
    • /
    • 2011
  • The present study aimed to investigate the diurnal variations in air concentrations and exchange fluxes of ammoniacal nitrogen ($NH_x$: ammonia ($NH_3$) and particulate ammonium) in a subalpine deciduous forest in central Japan during a week in summer. The $NH_3$ concentrations ($0.50\;{\mu}g\;N\;m^{-3}$ on average) showed a clear circadian variation, i.e., high and low in the daytime and nighttime, respectively. The concentration of particulate ammonium in the coarse fractions was extremely low, whereas that for the PM2.5 fraction was relatively high $0.55\;{\mu}g\;N\;m^{-3}$ on average). The main inorganic ion components of PM2.5 at the study site were ammonium and sulfate. The exchange fluxes of $NH_x$ were bidirectional. Both the maximum and minimum values occurred in the daytime, i.e., $0.39\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.11\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for $NH_3$ and $0.25\;mg\;N\;m^{-2}\;hr^{-1}$ of downward flux and $0.13\;mg\;N\;m^{-2}\;hr^{-1}$ of upward flux for PM2.5 ammonium. The exchange fluxes of $NH_x$ at night could be considered as zero. The mean deposition velocity during the research period was almost zero for both $NH_3$ and PM2.5 ammonium. The atmosphere-forest exchange of $NH_x$ in the forest during the study period was balanced. The remarkably large deposition of $NH_x$ was attributable to meteorological events such as showers the night before that thoroughly washed the forest canopy and subsequent clear skies in the morning, which enhanced convection. The cleaning effect of rainfall and the rapid change in convection in the early morning should be monitored to evaluate and generalize the gas and particle exchange in a forest.