• Title/Summary/Keyword: velocity variations

Search Result 657, Processing Time 0.029 seconds

Biofilter pretreatment for the control of microfiltration membrane fouling

  • Park, Jae-Hyung;Satoshi Takizawa;Hiroyuki Katayama;Shinichiro Ohgaki
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.31-38
    • /
    • 2003
  • A pilot scale biofilter pretreatment-microfiltration system (BF-MF) was operated to investigate the effect of biofilter treatment in fouling reduction of microfiltration. Biofiltration was expected to reduce the membrane fouling by removal of turbidity and metal oxides. The hollow-fiber MF module with a nominal pore size of 0.1$\mu$m and a surface area of 8m$^2$ was submerged in a filtration tank and microfiltration was operated at a constant flux of 0.5 m/d. Biofiltration using polypropylene pellets was performed at a high filtration velocity of 320 m/d. Two experimental setups composed of MF and BF/MF, i.e., without and with biofilter pretreatment, were compared. Throughout the experimental period of 9 months, biofilter pretreatment was effective to reduce the membrane fouling, which was proved by the result of time variations of trans-membrane pressure and backwash conditions. The turbidity removal rate by biofiltration varied between 40% to 80% due to the periodic washing for biofilter contactor and raw water turbidity. In addition to turbidity, metals, especially Mn, Fe and Al were removed effectively with average removal rates of 89.2%, 67.8% and 64.9%, respectively. Further analysis of foulants on the used membranes revealed that turbidity and metal removal by biofiltration was the major effect of biofiltration pretreatment against microfiltration fouling.

  • PDF

Motion of Charged Micro-particle Immersed in Liquid Crystal Controlled by In-plane Field for Electro Paper Display

  • Baik, In-Su;Choi, Ju-Hwan;Jung, Byoung-Sun;Jeon, Sang-Youn;Song, Eun-Kyoung;Lee, Seung-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • We have studied the motion of charged micro-particles that are immersed in a nematic liquid crystal (LC) and controlled by in-plane field. The LC is an anisotropic liquid such that the viscosity of the LC depends on flow direction, phase of the LC, and temperature, which affects the motion of the charged particles under the influence of electric field. This study shows that the motion of charged particles mainly depends on the applied voltage and the LC phase, but does not show any significant influence from the initial alignment of LC, although one may expect directional difference in drag force due to interaction between LC and particle. The viscosity changes due to temperature variations in nematic phase also show no signification influence on particle velocity when compared to the effect from varying in-plane field strength.

A Numerical Simulation of the Interannual and Decadal Variations of the Northern Lower Stratospheric Polar Temperature (북반구 하부성층권 극기온의 경년변화와 수십년주기변화의 수치모의)

  • Choi, Wookap;Kim, Yujin;Kim, Dongjoon
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2009
  • Seoul National University General Circulation Model (SNUGCM) has been run for 100 years to obtain daily temperature and meridional velocity at the Northern lower stratosphere. The model results are compared with the NCEP/NCAR reanalysis data. The polar temperature and the eddy heat flux from the model show that the model-produced climatology has well-known cold bias and weaker planetary wave activities. The model climatology also has a lag in the seasonal evolution. The relationship between the model-produced polar temperature and the eddy heat flux is investigated with respect to the interannual and decadal time scales. The interannual variation of the polar temperature is related with both total and stationary eddy heat flux in January and March, which is in agreement with observation. The model, however, does not reproduce the relationship between the decadal variation of the polar temperature and transient eddy heat flux, which is revealed in the observed data.

A Study of Frost Formation and Heat Transfer on a Cylinder in a Cross-Flow (주유동중에 놓인 원관 외부에서의 발생하는 착상 및 열전달에 관한 연구)

  • Lee, D.G.;Choi, M.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.537-549
    • /
    • 1996
  • A numerical study of heat and mass transfer has been carried out for a frost formation process on a circular cylinder in a cross flow including the effect of buoyancy. Studies include cases of low and high Reynolds number flows. The effect of normal velocity at the surface which is produced due to mass transfer was included in the analysis as well as heat transfer contribution generated due to mass transfer. Variations of heat transfer and frost growth both in time and in the circumferential direction have been obtained for various buoyancy parameters. The effect of flow directions(identical or opposite directions to the gravity) has been studied to yield different frost growth. Our results have been compared with existing experimental data and are in good agreement. Buoyancy analyses for a high Reynolds number flow agree with full numerical solutions for the case of having the same flow direction as gravity. However, for the opposite direction case, the boundary layer analyses would not be applicable to predict frost growth except the region near the stagnation point.

  • PDF

Active vibration control: considering effect of electric field on coefficients of PZT patches

  • Sharma, Sukesha;Vig, Renu;Kumar, Navin
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1091-1105
    • /
    • 2015
  • Piezoelectric coefficient and dielectric constant of PZT-5H vary with electric field. In this work, variations of these coefficients with electric field are included in finite element modelling of a cantilevered plate instrumented with piezoelectric patches. Finite element model is reduced using modal truncation and then converted into state-space. First three modal displacements and velocities are estimated using Kalman observer. Negative first modal velocity feedback is used to control the vibrations of the smart plate. Three cases are considered v.i.z case 1: in which variation of piezoelectric coefficient and dielectric constant with electric field is not considered in finite element model and not considered in Kalman observer, case 2: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model and not considered in Kalman observer and case 3: in which variation of piezoelectric coefficient and dielectric constant with electric field is considered in finite element model as well as in Kalman observer. Simulation results show that appreciable amount of change would appear if variation of piezoelectric coefficient and dielectric constant with r.m.s. value of electric field is considered.

Three-Dimensional Flow Characteristics in the Downstream Region of a Butterfly-Type Valve Used in Air-Conditioning Systems (공기조화용 버터플라이 밸브 하류에서의 3차원 유동특성)

  • Park, Sang-Won;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.260-269
    • /
    • 2000
  • Oil-film flow visualizations and three-dimensional flow measurements have been conducted in the downstream region of a butterfly-type valve used in air-conditioning systems, with the variation of a disk open angle. The flow visualizations in the flow symmetry plane show that there are a pair of counter-rotating separation/recirculation zones as wall as two jet-like near-wall flows. These flow disturbances are strongly depends on the disk open angle. Based on the flow visualization, a qualitative flow model is suggested in the near-field and downstream region of the valve disk. For a small disk open angle, the mean velocities and turbulent intensities have relatively small values in the near-field of the valve disk, but they do not show uniform distributions even in some downstream region. With an increment of the disk open angle, mean velocity variations and turbulent intensities are greatly increased in the immediate downstream region, but uniform distributions are quickly resumed as departing from the valve disk. The mass flow rate remains nearly constant for the disk open angles less than 30 degrees, meanwhile it strongly depends on the disk open angles between 45 and 75 degrees. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 75 degrees.

Reference Trajectory Optimization of a Launch Vehicle M-3H-3 for Scientific Missions (과학위성 발사체 M-3H-3의 기준궤적 최적화)

  • Lee, Seung-H.;Choi, Jae-W.;Lee, Jang-G.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.361-365
    • /
    • 1991
  • The problem being considered here is the determination of optimal guidance laws for a launch vehicle for scientific missions. The optimal guidance commands are determined in the sense that the least amount of fuel is used. A numerical solution was obtained for the case where the position and velocity state variables satisfy a specified constraint at the time of thrust cutoff. The method used here is based on the Pontryagin's maximum principle. This is the method of solving a problem in the calculus of variations. In particular, it applies to the problem considered here where the magnitude of the control is bounded. Simulations for the optimal guidance algorithm, during the 2nd and the 3rd-stage flight of the Japanese rocket M-3H-3, are carried out. The results show that the guided trajectory that satisfying the terminal constraints is optimal, and the guidance algorithm works well in the presence of some errors during the 1st-stage pre-programmed guidance phase.

  • PDF

Prediction of Bypass Transition Flow on Surface with Changing Pressure Gradient (압력구배가 변하는 표면 위의 Bypass 천이 유동의 예측)

  • Baek-Seong-Gu;Chung, Myung-Kyoon;Lim, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.823-832
    • /
    • 2002
  • A modified $textsc{k}$-$\varepsilon$model is proposed for calculation of transitional boundary-layer flows with changing pressure gradient. In order to develop the model for this problem, the flow is divided into three regions; pre-transition region, transition region and fully turbulent region. The effect of pressure gradient is taken into account in stream-wise intermittency factor, which bridges the eddy-viscosity models in the pre-transition region and the fully turbulent region. From intermittency data in various flows, Narashima's intermittency function, F(${\gamma}$), has been found to be proportional to $\chi$$^{n}$ according to the extent of pressure gradient. Three empirical correlations of intermittency factor being analyzed, the best one was chosen to calculate three benchmark cases of bypass transition flows with different free-stream turbulence intensity under arbitrary pressure gradient. It was found that the variations of skin friction and shape factor as well as the profiles of mean velocity in the transition region were very satisfactorily predicted.

Diagnosis of HSC Convective Flow Using a Digital Holographic Interferometry and PIV System (디지털 홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Cell 내부 열유동 해석)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasi-steady variation of temperature field, two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves were eliminated effectively using a digital image processing technique. The reconstructed images are clear, but transient flow cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

Lagrangian Particle Dispersion Modeling Intercomparison : Internal Versus Foreign Modeling Results on the Nuclear Spill Event (방사능 누출 사례일의 국내.외 라그랑지안 입자확산 모델링 결과 비교)

  • 김철희;송창근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.3
    • /
    • pp.249-261
    • /
    • 2003
  • A three-dimensional mesoscale atmospheric dispersion modeling system consisting of the Lagrangian particle dispersion model (LPDM) and the meteorological mesoscale model (MM5) was employed to simulate the transport and dispersion of non-reactive pollutant during the nuclear spill event occurred from Sep. 31 to Oct. 3, 1999 in Tokaimura city, Japan. For the comparative analysis of numerical experiment, two more sets of foreign mesoscale modeling system; NCEP (National Centers for Environmental Prediction) and DWD (Deutscher Wetter Dienst) were also applied to address the applicability of air pollution dispersion predictions. We noticed that the simulated results of horizontal wind direction and wind velocity from three meteorological modeling showed remarkably different spatial variations, mainly due to the different horizontal resolutions. How-ever, the dispersion process by LPDM was well characterized by meteorological wind fields, and the time-dependent dilution factors ($\chi$/Q) were found to be qualitatively simulated in accordance with each mesocale meteorogical wind field, suggesting that LPDM has the potential for the use of the real time control at optimization of the urban air pollution provided detailed meteorological wind fields. This paper mainly pertains to the mesoscale modeling approaches, but the results imply that the resolution of meteorological model and the implementation of the relevant scale of air quality model lead to better prediction capabilities in local or urban scale air pollution modeling.