• Title/Summary/Keyword: velocity variations

Search Result 657, Processing Time 0.026 seconds

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (I) : HYDRODYNAMIC STUDY

  • Noh, Joon-Woo
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.87-97
    • /
    • 2003
  • In this study, using the numerical model, the flow motion around skewed abutment is investigated to evaluate the skewness effect on the flow distribution. The skewness angle of the abutment which make with main flow direction is changed from $30\circ$ to $150\circ$ with increments of $10\circ$ while the contraction ratios due to the abutment are kept constant. For the investigation of the combined effects on the relationship between the skewness angle and flow intensities, this process will be .repeated fer different types of abutment (single and double) with different flow intensities. The maximum velocities and the velocity distributions, which can be obtained from each angle, are examined and analyzed corresponding to different angles of inclination. Based on successive model applications, an empirical expression, given in a function of contracted ratio and skewness angle, is derived for relating velocity amplifications according to the angle variations.

  • PDF

Numerical Simulation for Local Circulation of Urban Area and Deposition Phenomenon (도시지역의 국지순환과 침적현상에 관한 수치모의)

  • 이화운;오은주;노순아;반수진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.773-787
    • /
    • 2003
  • There are variations in the temperature Held due to urban heat island and anthropogenic heating so that regional scale meteorological field is changed. Therefore we simulate and predict the regional climate change according to surface characteristics through regional meteorological model. This study investigates the regional meteorological field by urbanization that influences in local circulation system using CSU-RAMS and simulates dry deposition velocity (V$_{d}$) using PNU/DEM which includes surface characteristics (such as albedo, surface hydrology and rough-ness length etc.) with calculated meteorological field. During the summer, horizontal distributions of V$_{d}$ were simulated using CSU-RAMS and PNU/DEM at Busan metropolitan area. The estimated values of V$_{d}$ were larger in forest and agricultural areas than water areas since ozone with low water solubility is destroyed slowly at wet surface or water.water.

Trajectory control of a manipulator by the decoupling sliding mode method (비 간섭 슬라이딩 모드 기법을 이용한 로봇 매니퓰레이터의 궤도제어)

  • Nam Taek-Kun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.842-848
    • /
    • 2005
  • The decoupling control using state feedback was once intensively studied during 1960's by many researchers. However, this control scheme was sensitive to the disturbance and Parameter variations. SMC(sliding mode control) is known as a robust control methodology to overcome such a disturbance. In this paper. the decoupling control by means of SM(sliding mode) for a trajectory control of a two-degrees-of- freedom manipulator was discussed. The position and velocity of manipulator tip were adopted to compose a nonlinear error functions. The reference inputs of the controller can be decided by switching function combined with the desired position and velocity. Simulation result is provided to verify the effectiveness of the proposed control scheme.

Nonlinear Stability Characteristics of Carbon Nanotubes (탄소나노튜브의 비선형 안정성 해석)

  • Choi, Jong-Woon;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.699-709
    • /
    • 2009
  • In this paper, the nonlinear dynamics and the stability of nanopipes conveying fluid and modelled as a thin-walled beam is investigated. Effects of boundary conditions, geometric nonlinearity, non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and the three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of carbon nanopipes are investigated and compared with linear case.

A Study on the Hydraulic Characteristics of River Junctions Using FLDWAV Model (FLDWAV 모형을 이용한 하천합류부에서의 수리학적 특성 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.275-283
    • /
    • 2007
  • This study aims at the calculation of a variation of flow characteristics of main channel for tributary inflow in river junction. So this study was analyzed the variation of flow depth and velocity in main channel for a change of inflow degree. For this purpose, FLDWAV model are carried out for variations of $30^{\circ}$, $60^{\circ}$ and $90^{\circ}$ tributary inflow at junction. Results show that velocity ratio(V1/V3) increases and flow depth ratio(H1/H3) decreases for discharge ratio(Q1/Q3) of upstream and downstream when degree increases in junction. And FLDWAV model was applied at a real river junctions. Selected area is a junction of Gumho river and Sin stream. Results show that pattern is similar to a virtual channel.

  • PDF

A Simulation of the $O_3$Dry Deposition Velocity Considering Topographical Characteristics in Pusan (부산의 지형적 특성을 고려한 $O_3$의 건성 침적속도 시뮬레이션)

  • 원경미;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.421-432
    • /
    • 1998
  • Deposition processes limit the life time of pollutants in the atmosphere and control the distance travelled before deposition. Thus the understanding about atmospheric deposition processes is essential for a proper assessment of the environmental impacts due to the anthropogenic pollutants. The dry deposition velocities are related to surface types, atmospheric stabilities, friction velocities, air pollutants and so on. In this study we simulated the dry deposition velocities of O3 in Pusan region. The calculated deposition velocities compared to the observed O3 data obtained during the summer of 1988 over a deciduous forest in Canada. The comparison showed that the model somewhat overpredicted deposition velocities for the average diurnal variations with maxima in daytime and minima in nighttime mostly due to the turbulence intensity.

  • PDF

Adaptive Fuzzy Sliding Mode Control of Brushless DC Motor (브러시리스 DC 모터의 적응퍼지 슬라이딩 모드 제어)

  • Lee, Jong-Ho;Kim, Sung-Tae;Kim, Young-Tas
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.647-649
    • /
    • 2000
  • Brushless DC motors are widely used in many industrial fields as an actuator of robot and driving power motors of electrical vehicle. In this paper adaptive fuzzy sliding mode scheme is developed for velocity control of brushless DC motor. The proposed scheme does not require an accurate dynamic model. yet it guarantees asymptotic trajectory tracking despite torque variations. Numerical simulation and DSP-based experimental works for velocity control of brushless DC motor are carried out.

  • PDF

A study on the spray characteristics of hydrocarbon-fuels with viscosity variations (점도변화에 따른 탄화수소계 연료의 분무특성에 관한 연구)

  • Lee, Yong-Il;Han, Jae-Seob
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.23-31
    • /
    • 2001
  • An experimental study was carried out to understand the spray characteristics of three kinds(kerosene, heating oil & diesel) of hydrocarbon-fuels. Fuel temperature and injection pressure were main variables in the experiment. Fuel Temperature was changed to obtain various levels of fuel viscosity. Spray angle and spray length were measured by using LVS(Laser Vapor Screen) photographs. 1D PDPA system was used to measure droplet size & droplet velocity. In room temperature, spray characteristics of three kinds of fuels were good, especially in case the fuel injection pressure was more than $6Kgf/cm^2$ It was also found that spray characteristics were poor in case fuel kinematic viscosity was more than 5cSt.

  • PDF

Study of The Cushion Characteristics in accordance with Shapes of Cushion Ring of Hydraulic Cylinder (유압실린더의 쿠션링 형상에 따른 쿠션 특성 연구)

  • Lee, Y.B.;Ko, J.M.;Park, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.2
    • /
    • pp.14-19
    • /
    • 2008
  • Hydraulic excavator consists of booms, arms, bucket, and cylinder. The cylinder make these structures moved and the cushion parts of cylinder in operation absorb the great impact which is stemmed from high velocity and pressure at cushion parts of cylinders. The cushion technology of cylinders has a great effect on the operator's comfortable as well as protecting equipment from damage by suppressing the inertia of the hydraulic excavator. In this study, three hydraulic cylinders have different shapes of a cushion ring, respectively. we studied optimal cushion pattern by analyzing the change of cushion pressure and time, according to supply pressure and velocity variations.

  • PDF

Effect of Cut-off Angle on Flow Pattern of Centrifugal Multi-blade Fan (원심 다익홴의 유동에 대한 컷 오프 각도의 영향)

  • Kang, Kyung-Jun;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • This study investigated on details of flow characteristics of a multi-blade fan for domestic ventilation. Experiments and analysis were carried out to describe on flow pattern with variations of cut-off angle near the scroll housing throat, which were performed by PIV measurement for the flow field and by total pressure probes. The stagnation point at cut-off region of the fan moves to the exit of the scroll housing as the cut-off angle increases. The movement of stagnation point and the variation of throat area of the scroll housing influence to the distribution of velocity magnitude at the exit of the fan. Furthermore, a large distortion of the velocity distribution at the scroll exit causes to increase mixing loss along the flow path.