• Title/Summary/Keyword: velocity integration method

Search Result 189, Processing Time 0.026 seconds

An Accelerated Iterative Method for the Dynamic Analysis of Multibody Systems (반복 계산법 및 계산 가속기법에 의한 다물체 동역학 해법)

  • 이기수;임철호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.899-909
    • /
    • 1992
  • An iterative solution technique is presented to analyze the dynamic systems of rigid bodies subjected to kinematic constraints. Lagrange multipliers associated with the constraints are iteratively computed by monotonically reducing an appropriately defined constraint error vector, and the resulting equation of motion is solved by a well-established ODE technique. Constraints on the velocity and acceleration as well as the position are made to be satisfied at joints at each time step. Time integration is efficiently performed because decomposition or orthonormalization of the large matrix is not required at all. An acceleration technique is suggested for the faster convergence of the iterative scheme.

Molecular Dynamic Simulation for Penetration of Carbon Nanotubes into an Array of Carbon Nnantotubes

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.290-296
    • /
    • 2020
  • When two layers of carbon nanotube (CNT) arrays are loaded to mate, the free ends of individual CNTs come into contact at the interface of the two layers. This leads to a higher contact resistance due to a smaller contact region. However, when the free CNT ends of one array penetrate into the mating array, the contact region increases, effectively lowering the contact resistance. To explore the penetration of mating CNTs, we perform molecular dynamic simulations of a simple unit cell model, incorporating four CNTs in the lower array layer coupled with a single moving CNT on the upper layer. The interaction with neighboring CNTs is modelled by long-range carbon bond order potential (LCBOP I). The model structure is optimized by energy minimization through the conjugate gradient method. A NVT ensemble is used for maintain a room temperature during simulation. The time integration is performed through the velocity-Verlet algorithm. A significant vibrational motion of CNTs is captured when penetration is not available, resulting in a specific vibration mode with a high frequency. Due to this vibrational behavior, the random behaviors of CNT motion for predicting the penetration are confirmed under the specific gap distances between CNTs. Thus, the probability of penetration is examined according to the gap distance between CNTs in the lower array and the aspect ratio of CNTs. The penetration is significantly affected by the vibration mode due to the van der Waals forces between CNTs.

Computations of Droplet Impingement on Airfoils in Two-Phase Flow

  • Kim, Sang-Dug;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2312-2320
    • /
    • 2005
  • The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and Continuous Random Walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size ; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data.

Adaptive finite element wind analysis with mesh refinement and recovery

  • Choi, Chang-Koon;Yu, Won-Jin
    • Wind and Structures
    • /
    • v.1 no.1
    • /
    • pp.111-125
    • /
    • 1998
  • This paper deals with the development of variable-node element and its application to the adaptive h-version mesh refinement-recovery for the incompressible viscous flow analysis. The element which has variable mid-side nodes can be used in generating the transition zone between the refined and unrefined element and efficiently used for the construction of a refined mesh without generating distorted elements. A modified Guassian quadrature is needed to evaluate the element matrices due to the discontinuity of derivatives of the shape functions used for the element. The penalty function method which can reduce the number of the independent variables is adopted for the purpose of computational efficiency and the selective reduced integration is carried out for the convection and pressure terms to preserve the stability of solution. For the economical analysis of transient problems in which the locations to be refined are changed in accordance with the dynamic distribution of velocity gradient, not only the mesh refinement but also the mesh recovery is needed. The numerical examples show that the optimal mesh for the finite element analysis of a wind around the structures can be obtained automatically by the proposed scheme.

Computation of Turbulent Flow around Wigley Hull Using 4-Stage Runge-Kutta Scheme on Nonstaggered Grid (정규격자계와 4단계 Range-Kutta법을 사용한 Wigley선형 주위의 난류유동계산)

  • Suak-Hp Van;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.87-99
    • /
    • 1994
  • Reynolds Averaged Navier-Stokes equations are solved numerically for the computation of turbulent flow around a Wigley double model. A second order finite difference method is applied for the spatial discretization on the nonstaggered grid system and 4-stage Runge-Kutta scheme for the numerical integration in time. In order to increase the time step, residual averaging scheme of Jameson is adopted. Pressure field is obtained by solving the pressure-Poisson equation with the appropriate Neumann boundary condition. For the turbulence closure, 0-equation turbulence model of Baldwin-Lomax is used. Numerical computation is carried out for the Reynolds number of 4.5 million. Comparisons of the computed results with the available experimental data show good agreements for the velocity and pressure distributions.

  • PDF

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Mapping the water table at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network using multiple geophysical methods

  • Ju, Hyeon-Tae;Sa, Jin-Hyeon;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • The most effective way to distinguish subsurface interfaces that produce various geophysical responses is through the integration of multiple geophysical methods, with each method detecting both a complementary and unique set of distinct physical properties relating to the subsurface. In this study, shallow seismic reflection (SSR) and ground penetrating radar (GPR) surveys were conducted at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network to map the water table, which was measured at 12 m depth during the geophysical surveys. The water table proved to be a good target reflector in both datasets, as the abrupt transition from the overlying unsaturated weathered rock to the underlying saturated weathered rock yielded large acoustic impedance and dielectric constant contrasts. The two datasets were depth converted and integrated into a single section, with the SSR and GPR surveys conducted to ensure subsurface imaging at approximately the same wavelength. The GPR data provided detailed information on the upper ~15 m of the section, whereas the SSR data imaged structures at depths of 10-45 m. The integrated section thus captured the full depth coverage of the sandy clay, water table, weathered rock, soft rock, and hard rock structures, which correlated well with local drillcore and water table observations. Incorporation of these two geophysical datasets yielded a synthetic section that resembled a simplified aquifer model, with the best-fitting seismic velocity, dielectric constant, and porosity of the saturated weathered layer being $v_{seismic}=1000m/s$, ${\varepsilon}_r=16$, and ${\phi}=0.32$, respectively.

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

On the Removal of Irregular Frequencies in the Prediction of Ship Motion in Waves (파랑중에서 전진동요하는 선박의 특이파수 억제에 관한 연구)

  • H.Y. Lee;D.J. Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.73-81
    • /
    • 1994
  • The source and source/dipole distribution methods using 3-dimensional panel method have been widely used for ship motion analysis. When these methods are used, large errors in the predicted hydrodynamic coefficients are introduced around the irregular frequencies caused by the resonance of imaginary internal flow. Therefore, the irregular frequencies need to be removed for an accurate prediction of ship motion. This paper adopts 3-dimensional translating and oscillating Green function derived by Wu. The adaptive integration method, stretching transform and stationary phase method are used for the calculation of the calculation of Green function and the integral equation is derived by distributing the Green function n ship surface and inner free-surface. The condition of zero normal velocity, that is, wall condition on inner free-surface has been successfully used for the removal of irregular frequencies in oscillating problems. The calculations are carried out for series 60($C_B=0.7$) vessel and the results are compared with those of other theoretical analyses and experiment.

  • PDF