• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.035 seconds

Underwater Hybrid Navigation System Based on an Inertial Sensor and a Doppler Velocity Log Using Indirect Feedback Kalman Filter (간접 되먹임 필터를 이용한 관성센서 및 초음파 속도센서 기반의 수중 복합항법 시스템)

  • Lee, Chong-Moo;Lee, Pan-Mook;Seong, Woo-Jae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.149-156
    • /
    • 2003
  • This paper presents an underwater hybrid navigation system for a semi-autonomous underwater vehicle (SAUV). The navigation system consists of an inertial measurement unit (IMU), an ultra-short baseline (USBL) acoustic navigation sensor and a doppler velocity log (DVL) accompanying a magnetic compass. The errors of inertial measurement units increase with time due to the bias errors of gyros and accelerometers. A navigational system model is derived to include the error model of the USBL acoustic navigation sensor and the scale effect and bias errors of the DVL, of which the state equation composed of the navigation states and sensor parameters is 25 in the order. The conventional extended Kalman filter was used to propagate the error covariance, update the measurement errors and correct the state equation when the measurements are available. Simulation was performed with the 6-d.o.f. equations of motion of SAUV in a lawn-mowing survey mode. The hybrid underwater navigation system shows good tracking performance by updating the error covariance and correcting the system's states with the measurement errors from a DVL, a magnetic compass and a depth senor. The error of the estimated position still slowly drifts in horizontal plane about 3.5m for 500 seconds, which could be eliminated with the help of additional USBL information.

  • PDF

Solver for the Wavier-Stokes Equations by using Initial Guess Velocity (속도의 초기간 추정을 사용한 Navier-Stokes방정식 풀이 기법)

  • Kim, Young-Hee;Lee, Sung-Kee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.445-456
    • /
    • 2005
  • We propose a fast and accurate fluid solver of the Wavier-Stokes equations for the physics-based fluid simulations. Our method utilizes the solution of the Stokes equation as an initial guess for the velocity of the nonlinear term in the Wavier-Stokes equations. By guessing the initial velocity close to the exact solution of the given nonlinear differential equations, we can develop remarkably accurate and stable fluid solver. Our solver is based on the implicit scheme of finite difference methods, that makes it work well for large time steps. Since we employ the ADI method, our solver is also fast and has a uniform computation time. The experimental results show that our solver is excellent for fluids with high Reynolds numbers such as smoke and clouds.

A Case Report of an Intervention Strategy that Applied an ICF Tool to Improve the Walking Ability of Stroke Patients (뇌졸중 환자의 보행능력 증진을 위한 ICF(International Classification of Functioning, Disability and Health) Tool을 적용한 중재전략의 증례)

  • Bang, Dae-Hyouk;Song, Myung-Soo;Jeong, Wang-Mo;Bong, Soon-Nyung
    • PNF and Movement
    • /
    • v.12 no.2
    • /
    • pp.107-113
    • /
    • 2014
  • Purpose: The objective of this study was to identify functional problems, including walking ability, of patients with strokes using the International Classification of Functioning, Disability, and Health (ICF) and to present a method that could solve functional problems, thereby determining the applicability of the ICF to increase the quality of evaluation and intervention in clinical fields in the future. Methods: Information on stroke patients who were admitted and treated in a hospital was collected. The authors conducted evaluations, interventions, and measurements of the results of the ICF tool in order to improve gait abilities of patients. The subjects were trained using proprioceptive neuromuscular facilitation (PNF) one hour a day and five times a week for four weeks. The result measurement variables were a six-minute gait test, 10 m velocity test, gait instability test, and measurements using the ICF sheet. Results: In the six-minute gait test, gait distance increased by 48 m, from 102 m to 150 m. The gait velocity test result showed an improvement from 0.36m/s to 0.44m/s. The subjects performed a gait instabilitytestwithacupfilledwith50mmwater. In the gait instability test, the amount of water was 38 mm before the intervention; however, it was 50 mm after the intervention. The gait velocity with a cup filled with water improved from 0.25m/s to 0.31m/s. Conclusion: An evaluation and intervention were designed with the ICF tool for stroke patients. Gait abilities improved when the PNF technique was used. The IFC method can be used for evaluation and intervention, and it could help improve gait abilities of stroke patients.

Application and Research of Monte Carlo Sampling Algorithm in Music Generation

  • MIN, Jun;WANG, Lei;PANG, Junwei;HAN, Huihui;Li, Dongyang;ZHANG, Maoqing;HUANG, Yantai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3355-3372
    • /
    • 2022
  • Composing music is an inspired yet challenging task, in that the process involves many considerations such as assigning pitches, determining rhythm, and arranging accompaniment. Algorithmic composition aims to develop algorithms for music composition. Recently, algorithmic composition using artificial intelligence technologies received considerable attention. In particular, computational intelligence is widely used and achieves promising results in the creation of music. This paper attempts to provide a survey on the music generation based on the Monte Carlo (MC) algorithm. First, transform the MIDI music format files to digital data. Among these data, use the logistic fitting method to fit the time series, obtain the time distribution regular pattern. Except for time series, the converted data also includes duration, pitch, and velocity. Second, using MC simulation to deal with them summed up their distribution law respectively. The two main control parameters are the value of discrete sampling and standard deviation. Processing the above parameters and converting the data to MIDI file, then compared with the output generated by LSTM neural network, evaluate the music comprehensively.

An Approach for Implementation of Underwater Acoustic Communication Channel using 2-D TLM Modeling and Cross-Correlation Function

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.163-167
    • /
    • 2010
  • In underwater acoustic communication, acoustic signals from transducers or hydrophones are used. And the underwater acoustic communication channels are very complicated, because of vertical distribution of acoustic velocity according depths, and reflections from boundaries like as surface or bottom. For the implementation of the underwater acoustic communication channel, the image method or ray tracing method have been used. In this paper, we introduce a new approach for implementation of underwater acoustic communication channel using the simulation of the Transmission Line Matrix Modeling and cross-correlations from the input and output signals.

A Nonlinear Information Filter for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1669-1674
    • /
    • 2004
  • In this paper, a nonlinear information filter (IF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, a nonlinear IF is used in place of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

  • PDF

Influence of Compressibility Modification to k-ε Turbulence Models for Supersonic Base Flow

  • Jeon, Sang-Eon;Park, Soo-Hyung;Byun, Yung-Hwan;Kwon, Jang-Hyuk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.188-198
    • /
    • 2012
  • An improvement to the k-${\varepsilon}$ turbulence model is presented and is shown to lead to better agreement with data regarding supersonic base flows. The improvement was achieved by imposing a grid-independent realizability constraint in the Launder-Sharma k-${\varepsilon}$ model. The effects of compressibility were also examined. The numerical results show that the modified Launder-Sharma model leads to some improvement in the prediction of the velocity and turbulent kinetic energy profiles. Compressibility corrections also lead to better agreement in both the turbulent kinetic energy and the Reynolds stress profiles with the experimental data.

Satellite monitoring and prediction for the occurrence of the red tide in the coastal areas in the South Sea of Korea - I. The relationship between the occurrence of red tide and the meteorological factors

  • Yoon, Hong-Joo;Kim, Young-Seup;Kim, Sang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.656-656
    • /
    • 2002
  • It is studied on the relationship between the occurrence of red tide(Chlorophyll-a concentration by the in-situ and satellite data) and the meteorological factors (precipitation, air temperature, sunshine and winds) in the coastal areas in the South Sea of Korea. In summer and early-fall which frequently occurred the red tide, the precipitation above 213mm had directly influence on the occurrence of red tide because it carried the nutritive substance which originated from the land into the coastal areas. Then air temperature kept up generally high values as 23~26$^{\circ}C$, and sunshine with 187~198hours and wind velocity with 3.1~7.9m/s showed not directly the relationship on the occurrence of red tide.

  • PDF

Dispersion-Managed Optical Links Combined with Asymmetrical Optical Phase Conjugation for Compensating for Distorted WDM Signals

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 2016
  • The combination of dispersion management (DM) and midway optical phase conjugation (OPC) is one of the promising techniques for compensating for optical signal distortion due to group velocity dispersion and nonlinear fiber effects. However, in this combination technique, midway OPC restricts the flexible optical link configuration. Therefore, the possibility of implementing the flexible optical link configuration with non-midway OPC applied to complete inline DM links is investigated in this study. It is confirmed that although the compensation using non-midway OPC for the distorted WDM channels is less effective than that using midway OPC, when non-midway OPC is placed at positions closer to the transmitters, the deployment of precompensation (i.e., the sequence of DCF + SMF)-OPC-postcompensation (i.e., the sequence of SMF + DCF) is more advantageous for the compensation. On the other hand, inverse deployment with respect to OPC (i.e., postcompensation-OPC-precompensation) is more advantageous when non-midway OPC is placed at positions closer to the receivers.

Obstacle Avoidance for a Mobile Robot Using Optical Flow (광류 정보를 이용한 이동 로봇의 장애물 회피 항법)

  • Lee, Han-Sik;Baek, Jun-Geol;Jang, Dong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.25-35
    • /
    • 2002
  • This paper presents a heuristic algorithm that a mobile robot avoids obstacles using optical flow. Using optical flow, the mobile robot can easily avoid static obstacles without a prior position information as well as moving obstacles with unknown trajectories. The mobile robot in this paper is able to recognize the locations or routes of obstacles, which can be detected by obtaining 2-dimensional optical flow information from a CCD camera. It predicts the possibilities of crash with obstacles based on the comparison between planned routes and the obstacle routes. Then it modifies its driving route if necessary. Driving acceleration and angular velocity of mobile robot are applied as controlling variables of avoidance. The corresponding simulation test is performed to verify the effectiveness of these factors. The results of simulation show that the mobile robot can reach the goal with avoiding obstacles which have variable routes and speed.