• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.04 seconds

A New Velocity Measurement Method using Linear Type Hall-effect Sensor for Electro-mechanical Fin Actuator (선형홀센서를 이용한 전기식 구동장치의 속도 신호 구현)

  • Gu, Jeong-Hoi;Song, Chi-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.70-75
    • /
    • 2010
  • The objective of this paper is to propose a new velocity measurement method for an electro-mechanical fin actuator. The model of the electro-mechanical fin actuator includes uncertainties such as unknown disturbances and parameter variations in flight condition. So, an electro-mechanical fin actuator system needs robust control algorithm which requires not only position information but also velocity information. Usually, analog tachometers have been used for velocity feedback in an electro-mechanical fin actuator. However, using these types of sensors have problems such as the cost, space, and malfunction. These problems lead to propose a new velocity measurement method using linear type Hall-effect sensor. In order to verify the proposed method, several experiments are performed using Model Following Sliding Mode Controller(MFSMC). It is shown that the MFSMC with a new velocity measurement method using linear type Hall-effect sensor can satisfy the requirements without using of velocity sensor.

A Study on Estimation of Doppler Frequency in a Current Velocity Measurement Radar (유속 측정 레이다에서의 도플러 주파수 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1551-1557
    • /
    • 2013
  • A current velocity measurement radar estimates Doppler frequencies to extract the corresponding surface velocity information. Therefore, it is required to maintain the high degree of reliability and accuracy of Doppler frequency estimates. However, Doppler spectra of water surface return echoes can have very widely varying shapes according to measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of conventional velocity estimating algorithm in a radar sensor. Therefore, in this paper, a newly suggested algorithm is proposed for improvement using estimation of peak Doppler frequencies. The proposed method shows that the more accurate velocity measurement can be possible comparing with the conventional one.

Robust Ultrasound Multigate Blood Volume Flow Estimation

  • Zhang, Yi;Li, Jinkai;Liu, Xin;Liu, Dong Chyuan
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.820-832
    • /
    • 2019
  • Estimation of accurate blood volume flow in ultrasound Doppler blood flow spectrograms is extremely important for clinical diagnostic purposes. Blood volume flow measurements require the assessment of both the velocity distribution and the cross-sectional area of the vessel. Unfortunately, the existing volume flow estimation algorithms by ultrasound lack the velocity space distribution information in cross-sections of a vessel and have the problems of low accuracy and poor stability. In this paper, a new robust ultrasound volume flow estimation method based on multigate (RMG) is proposed and the multigate technology provides detail information on the local velocity distribution. In this method, an accurate double iterative flow velocity estimation algorithm (DIV) is used to estimate the mean velocity and it has been tested on in vivo data from carotid. The results from experiments indicate a mean standard deviation of less than 6% in flow velocities when estimated for a range of SNR levels. The RMG method is validated in a custom-designed experimental setup, Doppler phantom and imitation blood flow control system. In vitro experimental results show that the mean error of the RMG algorithm is 4.81%. Low errors in blood volume flow estimation make the prospect of using the RMG algorithm for real-time blood volume flow estimation possible.

Analysis of Velocity Adaptive Handoff Algorithm (속도적응 핸드오프 알고리즘 분석)

  • 김영일;진용옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.748-760
    • /
    • 1997
  • The handoff failure probability has to be enhanced efficiently to enhance the performance of PCS system. In this paper a new scheme called velocity adaptive handoff algorithm for reducing handoff failure probability and maintaining the carried traffic constantly in PCS systems, by assigning low handoff threshold value for high mobility calls, and assigning high handoff threshold value for low mobility calls, is presented. The performance of evaluation of this new scheme is carried out in terms of tranffic characteristics. Also velocity estimation algorithm for this new scheme is presented. According to the result, the handoff failure probability of velocity adaptive handoff algorithm is enhanced about 60%.

  • PDF

Mobile Robot Initial Velocity Estimation in Passive RFID Environment (수동 RFID 환경에서의 이동로봇의 초기 속도 추정)

  • Kim, Sung-Bok;Lee, Sang-Hyup;Kim, Hak-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1053-1054
    • /
    • 2008
  • This paper presents the mobile robot initial velocity estimation using spatial/temporal information from passive RFID system. A mobile robot is traveling along a sequence of line segments, each at a constant velocity, and the number of passive tags sensed at every sampling instant is at most one. To simplify the problem, a mobile robot is commanded to traverse two passive tags with steering angle unchanged. The 6th order polynomial equation for the mobile robot initial velocity estimation is obtained, along with some discussion on resolving the multiplicity of solutions.

  • PDF

A Study on Simulation of Doppler Spectra in a Current Velocity Radar (유속 레이다에서의 도플러 스펙트럼 모의구현에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2101-2107
    • /
    • 2012
  • A current velocity measurement radar for a river or a stream estimates Doppler frequencies of return echoes to extract the corresponding surface velocity information. It is very important to maintain the reliability and accuracy of these velocity estimates for water resource management such as flooding or drought conditions. However, received Doppler spectra of water surface return echoes have very widely varying shapes according to different measurement environments and weather conditions. Therefore, serious problems may arise in maintaining the reliability and accuracy of velocity estimating algorithm in a radar sensor because of Doppler spectra which can have many different kind of shapes. Therefore, in this paper, an appropriate Doppler spectrum model is suggested to simulate many various Doppler spectra. This model can be very useful in validating the reliability and accuracy of surface velocity estimates.

Sensitivity Analysis of Least Squares Velocity Estimation Using a Regular Polygonal Array of Optical Mice (정다각형 배열 광마우스를 이용한 최소 자승 속도 추정법에 대한 민감도 분석)

  • Kim, Sung-Bok;Jeong, Il-Hwa;Lee, Sang-Hyup
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.145-146
    • /
    • 2007
  • This paper presents the sensitivity analysis of the leasst qsuares velocity estimation of an omnidirectional mobile robot using a regular polygonal array of optical mice. First, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. Then, for a given set of optical mouse readings, the least squares velocity estimation of a mobile robot is obtained as the simple average. Finally, the sensitivity analysis of the proposed least squares velocity estimation to imprecise installation is made.

  • PDF

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

Seismic Traveltime Tomography in Anisotropic Black Shale (이방성 특성이 강한 흑색 셰일에서 탄성파 주시 토모그래피)

  • Kang, Jong-Seok;Cha, Young-Ho;Lee, Kwang-Bae;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.393-398
    • /
    • 2007
  • Seismic traveltime tomography technique was conducted at a site composed of black shale. It is well known that black shale has strong anisotropic property. Therefore, the anisotropic property of black shale has to be considered to obtain the appropriate subsurface velocity model by an inversion process. To estimate the anisotropic constant of the velocity of the black shale in the survey area, the relation between the velocity, which is calculated by the straight ray path and the first arrival time, and the angle of the ray propagation was examined. The elliptically shaped relation was found and it reveals that the black shale contains the anisotropic property of velocity. It was also noticed that the horizontal velocity is faster than the vertical velocity. When the estimated anisotropic constant was applied in the process of the velocity inversion for three sets of field data, we could obtain the appropriate velocity structures of the site that is consistent with the result of the geological survey.

A Modified Velocity Estimation Scheme in AAS (Adaptive Antenna System) (AAS(적응형 안테나 시스템)에서의 이동체 속도 추정 방안)

  • Chung, Young-Uk;Choi, Yong-Hoon;Lee, Hyuk-Joon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.100-107
    • /
    • 2009
  • Velocity estimation is one of important issues for efficient system management in mobile cellular systems. In this paper, a modified velocity estimation scheme which works in Adaptive Antenna System (AAS) is proposed. The proposed scheme estimates user velocity based on moving distance information and sojourn time information. From numerical results, it is shown that the proposed scheme can estimate user velocity accurately with low cost.

  • PDF