• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.033 seconds

Investigation on correlation between pulse velocity and compressive strength of concrete using ANNs

  • Tang, Chao-Wei;Lin, Yiching;Kuo, Shih-Fang
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.477-497
    • /
    • 2007
  • The ultrasonic pulse velocity method has been widely used to evaluate the quality of concrete and assess the structural integrity of concrete structures. But its use for predicting strength is still limited since there are many variables affecting the relationship between strength and pulse velocity of concrete. This study is focused on establishing a complicated correlation between known input data, such as pulse velocity and mixture proportions of concrete, and a certain output (compressive strength of concrete) using artificial neural networks (ANN). In addition, the results predicted by the developed multilayer perceptrons (MLP) networks are compared with those by conventional regression analysis. The result shows that the correlation between pulse velocity and compressive strength of concrete at various ages can be well established by using ANN and the accuracy of the estimates depends on the quality of the information used to train the network. Moreover, compared with the conventional approach, the proposed method gives a better prediction, both in terms of coefficients of determination and root-mean-square error.

Real-Time Water Wave Simulation with Surface Advection based on Mass Conservancy

  • Kim, Dong-Young;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, we present a real-time physical simulation model of water surfaces with a novel method to represent the water mass flow in full three dimensions. In a physical simulation model, the state of the water surfaces is represented by a set of physical values, including height, velocity, and the gradient. The evolution of the velocity field in previous works is handled by a velocity solver based on the Navier-Stokes equations, which occurs as a result of the unevenness of the velocity propagation. In this paper, we integrate the principle of the mass conservation in a fluid of equilateral density to upgrade the height field from the unevenness, which in mathematical terms can be represented by the divergence operator. Thus the model generates waves induced by horizontal velocity, offering a simulation that puts forces added in all direction into account when calculating the values for height and velocity for the next frame. Other effects such as reflection off the boundaries, and interactions with floating objects are involved in our method. The implementation of our method demonstrates to run with fast speed scalable to real-time rates even for large simulation domains. Therefore, our model is appropriate for a real-time and large scale water surface simulation into which the animator wishes to visualize the global fluid flow as a main emphasis.

Dynamic PIV analysis of High-Speed Flow Ejected from the Inflator Housing of a Curtain-type Airbag (Dynamic PIV를 이용한 커튼형 에어백 부품림 장치의 유동해석)

  • Jang, Young-Gil;Kim, Seok;Lee, Sang-Joon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.407-408
    • /
    • 2006
  • Passenger safety is one of the most important considerations in the purchase of an automobile. A curtain-type air bag is increasingly adapted in deluxe cars for protecting passengers from the danger of side clash. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to pump up the air bag-curtain. Although the inflator housing is fundamental in designing a curtain-type air bag system, flow information on the inflator housing is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the airbag inflator housing in the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing was found to have large velocity fluctuations and the maximum velocity was about 700m/s. The velocity of high-speed flow was decreased rapidly and the duration of high-speed flow over 400m/s was maintained only to 30ms. After 100ms, there was no perceptible flow.

  • PDF

Development of a High Resolution Digital Cinematic Particle Image Velocimetry (고해상도 Cinematic PIV의 개발)

  • Park, Gyeong-Hyeon;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1535-1542
    • /
    • 2001
  • A high resolution digital cinematic Particle Image Velocimetry(PIV) has been developed. The system consists of a high speed CCD camera, a continuous Ar-ion laser and a computer with camera controller. To improve the spatial resolution, we adopt a Recursive Technique for velocity interrogation. At first, we obtain a velocity vector fur a larger interrogation window size based on the conventional two-frame cross-correlation PIV analysis using the FFT algorithm. Based on the knowing velocity information, more spatially resolved velocity vectors are obtained in the next iteration step with smaller interrogation windows. When the correct velocity vector at the first step is found to be critical, a Multiple Correlation Validation(MCV) technique is applied to decrease the spurious vectors. The MCV technique turns out to improve SNR(Signal to Noise Ratio) of the correlation table. The developed cinematic PIV method has been applied to the measurement of the unsteady flow characteristics of a Rushton turbine mixer. A total of 3,245 instantaneous velocity vectors were successfully obtained with 4 ms time resolution. The acquired spatial resolution corresponds to the conventional high resolution digital PIV system using a 1K ${\times}$ 1K CCD camera.

Non-Invasive Measurement of Shear Rates of Pulsating Pipe Flow Using Echo PIV (에코 PIV를 이용한 맥동 유동에서의 in vitro 전단률 측정 연구)

  • Kim, Hyoung-Bum;Chung, In-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1567-1572
    • /
    • 2004
  • Although accurate measurement of velocity profiles, multiple velocity vectors, and shear stress in arteries is important, there is still no easy method to obtain such information in vivo. This study shows the utility of combining ultrasound contrast imaging with particle image velocimetry (PIV) for non-invasive measurement of velocity vectors. The steady flow analytical solution and optical PIV measurements (for pulsatile flow) were used for comparison. When compared to the analytical solution, both echo PIV and optical PIV resolved the steady velocity profile well. Error in shear rate as measured by echo PIV (8%) was comparable to the error of optical PIV (6.5%). In pulsatile flow, echo PIV velocity profiles agreed well with optical PIV profiles. Echo PIV followed the general profile of pulsatile shear stress across the artery but underestimated wall shear at certain time points. These studies indicate that echo PIV is a promising technique for the non-invasive measurement of velocity profiles and shear stress.

Modeling of the Velocity of the Ceiling Jet Front (연기선단의 전파속도 모델에 관한 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.91-95
    • /
    • 2001
  • Decays of the ceiling jet front velocity under a circular ceiling are investigated. To simulate the ceiling jet in fires He and $N_2$gas were injected from a nozzle to the center of the ceiling. The jet fronts in the form of turbulent eddies were traced by a high-speed camera system. The instantaneous locations of the front were obtained from visual readings of visualized front, and the radial velocity was calculated from the information of the time and the location with respect to the front. The similarity and dimensional analysis were also carried out to reveal the relationship between the velocity decay and the radial distance. It was shown that the radial velocity of the front was inversely proportional to the radial distance in the fully developed region from the experimental results and the theoretical analysis.

  • PDF

Relationship Between Tweet Frequency and User Velocity on Twitter (트위터에서 트윗 주기와 사용자 속도 사이 관계)

  • Jeon, So-Young;Lee, Al-Chan;Seo, Go-Eun;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1380-1386
    • /
    • 2015
  • Recently, the importance of users' geographic location information has been highlighted with a rapid increase of online social network services. In this paper, by utilizing geo-tagged tweets that provides high-precision location information of users, we first identify both Twitter users' exact location and the corresponding timestamp when the tweet was sent. Then, we analyze a relationship between the tweet frequency and the average user velocity. Specifically, we introduce a tweet-frequency computing algorithm, and show analysis results by country and by city. As a main result, it is shown that the tweet frequency according to user velocity follows a power-law distribution (i.e., Zipf' distribution or a Pareto distribution). In addition, by performing a comparison between the United States and Japan, one can see that the exponent of the distribution in Japan is smaller than that in the United States.

High Temperature Dependent SPICE Modeling for Carrier Velocity in MOSFETs Using Measured S-Parameters (S-파라미터 측정을 통한 MOSFET 캐리어 속도의 고온 종속 SPICE 모델링)

  • Jung, Dae-Hyoun;Ko, Bong-Hyuk;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.12
    • /
    • pp.24-29
    • /
    • 2009
  • In order to model the high temperature dependence of the cutoff frequency $f_T$ in $0.18{\mu}m$ deep n-well isolated bulk NMOSFET, high temperature data of electron velocity of bulk MOSFETs from $30^{\circ}C$ to $250^{\circ}C$ are obtained by an accurate RF extraction method using measured S-parameters. From these data, an improved temperature-dependent electron velocity equation is developed and implemented in a BSIM3v3 SPICE model to eliminate modeling error of a conventional one in the high temperature range. Better agreement with measured $f_T$ data from $30^{\circ}C$ to $250^{\circ}C$ are achieved by using the SPICE model with the improved equation rather than the conventional one, verifying its accuracy of the improved one.

The effect of customer participation on encounter satisfaction: moderating of participation and commitment velocity (고객참여의 접점만족에 미치는 영향: 참여속도와 몰입속도의 조절효과 검증)

  • Ahn, Jinwoo
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.81-96
    • /
    • 2019
  • Because the service is characterized by simultaneous production and consumption, the customer must participate directly in the delivery and production process of the service. For this reason, the variable Customer Participation has aggregated many empirical results in the service marketing field. Recent research on customer participation has focused on the relationship marketing, and is empirically identifying the relevance of customer participation and relative value of relationship marketing. These findings indicate that customer participation should be understood in a relationship between customers and service firms. Using commitment velocity and customer participation velocity considering dynamic of the relationship, this study aims to re-examine the relationship between customer participation and encounter satisfaction which is the foundation of relationship formation. Multiple regression analysis and hierarchical regression analysis are used as research methods. The study found that customer participation has a direct positive effect on encounter satisfaction, and that commitment velocity and customer participation velocity also have a significant effect on encounter satisfaction. However, all assumptions that were expected to moderate the impact of customer participation on encounter satisfaction were rejected. Although the study failed to identify the moderating role, it was clear about the impact on the encounter satisfaction of commitment velocity and customer participation velocity. Applying them to a wider variety of service types provided an opportunity to identify the value of the study, and to broaden the scope of the study suing these variables.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.