• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.036 seconds

Measurement of Liquid-Metal Flow with a Dynamic Neutron Radiography (중성자 래디오그래피를 이용한 액체금속 유동장 측정)

  • Cha, Jae-Eun;Saito, Yasushi
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.63-68
    • /
    • 2011
  • The flow-field of a liquid-metal system is very important for the safety analysis and the design of the steam generator of liquid-metal fast breeder reactor. Dynamic neutron radiography (DNR) is suitable for a visualization and measurement of a liquid metal flow and a two-phase flow in a metallic duct. However, the three dimensional DNR techniques is not enough to obtain the velocity information in the wide channel up to now. In this research, a high speed DNR technique was applied to visualize the heavy liquid-metal flow field in the narrow channel with the HANARO-beam facility. The images were taken with a high frame-rate neutron radiography at 250 fps and analyzed with a Particle Image Velocimetry(PIV) method. The images were compared with the results of the commercial CFX code to study the feasibility of DNR technique for the measuring the heavy liquid-metal flow field. The PIV images could discern the turbulent vortex flow in the two-dimensional narrow channel.

The MPPT Control Method of the PMSG Wind Generation System using the Turbine Model with a Squirrel Cage Induction Motor (농형 유도기 터빈 모델을 이용해 구현한 영구자석 동기기 풍력발전 시스템의 MPPT 제어)

  • Lee, Joon-Min;Kim, Dong-Hwa;Shin, Hye-Su;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.231-236
    • /
    • 2012
  • This paper presents the MPPT(Maximum Power Point Tracking)control method of the PMSG wind generation system using the turbine model with a squirrel cage induction motor. The torque of squirrel cage induction turbine model is controlled by mathematization of speed characteristics of real blade. In this paper, maintenance and cost issues into consideration, except for previous method using information of the velocity of the wind speed sensor, the algorithm is presented. The algorithm is controlled by tracking the optimal point, the generator speed and maximum grid power. The vector controls of the generator side converter and the grid side converter are controlled respectively to obtain maximum torque and regulate unity power factor. With Psim simulations and experiments, the efficiency of squirrel cage induction turbine model and the validity of control algorithm are verified.

Image-Based Robust Output Feedback Control of Robot Manipulators using High-Gain Observer (고이득 관측기를 이용한 영상기반 로봇 매니퓰레이터의 출력궤환 강인제어)

  • Jeon, Yeong-Beom;Jang, Ki-Dong;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.731-737
    • /
    • 2013
  • In this paper, we propose an image-based output feedback robust controller of robot manipulators which have bounded parametric uncertainty. The proposed controller contains an integral action and high-gain observer in order to improve steady state error of joint position and performance deterioration due to measurement errors of joint velocity. The stability of the closed-loop system is proved by Lyapunov approach. The performance of the proposed method is demonstrated by simulations on a 5-link robot manipulators with two degrees of freedom.

Performance Analysis of Francis Turbines by CFD (CFD을 이용한 프란시스 수차의 내부유동 해석)

  • Choi, Hyen-Jun;Hwang, Young-Cheol;Kim, You-Taek;Nam, Chung-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.191.2-191.2
    • /
    • 2010
  • The conventional method to assess turbine performance is its model testing which becomes costly and time consuming for several design alternatives in design optimization. Computational fluid dynamics (CFD) has become a cost effective tool for predicting detailed flow information in turbine space to enable the selection of best design. In the present paper, Francis turbine of commercial small hydropower plants which is under 70kw is investigated. Solutions are investigated with respect to the hydraulic characteristics against an outward angle of guide vane, the number of guide vane and head (inlet velocity). By suitable modification of the runner shape, low pressure zone on the leading edge can be reduced. If the entire runner is to be optimized in this manner, flow simulation tests have to be carried out on a series of different geometrical shape.

  • PDF

Numerical studies of the oxygen and air combustion performance in a Corner-type coal fired boiler (발전용 코너 보일러의 순산소 및 공기연소 화로해석)

  • Lee, Incheol;Jang, Seokwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • Three dimensional numerical analysis of the oxygen and air were performed to investigate the combustion characteristics in a Corner-type pulverized coal boiler. With the actual operation data of the power plant, the distribution of velocity, gas temperature, $O^2$, $CO_2$, $H_2O$, $N_2$ as well as the particle tracking in the boiler were investigated. The predicted values at the outlet of furnace for the gas temperature and major species concentrations gave a good agreement with the designed values. The present analysis on combustion characteristics in a boiler would provide the useful information for the stable boiler operation and in trouble shooting boiler problem.

  • PDF

Optimal Walking Trajectory for a Quadruped Robot Using Genetic-Fuzzy Algorithm

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2492-2497
    • /
    • 2003
  • This paper presents optimal walking trajectory generation for a quadruped robot with genetic-fuzzy algorithm. In order to move a quadruped robot smoothly, both generations of optimal leg trajectory and free walking are required. Generally, making free walking is difficult to realize for a quadruped robot, because the patterned trajectory may interfere in the free walking. In this paper, we suggest the generation method for the leg trajectory satisfied with free walking pattern so as to avoid obstacle and walk smoothly. We generate via points of leg with respect to body motion, and then we use the genetic-fuzzy algorithm to search for the optimal via velocity and acceleration information of legs. All these methods are verified with PC simulation program, and implemented to SERO-V robot.

  • PDF

Modeling of External Impulse via the Concept of an Effective Mass in Sawing Task

  • Lee, Jae-Hoon;Park, Byung-Joon;Yi, Byung-Ju;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2713-2718
    • /
    • 2003
  • Some of manufacturing tasks such as sawing task often requires continuous impulsive motion. In case of sawing task, such impulsive motions can be observed between the teeth of the saw and the object. The amount of the external impulse exerted on the object has been treated as an important control parameter. The purpose of this work is to introduce a new concept of an effective mass in sawing task and to suggest an external impulse model in sawing task. A normalized impulse ellipsoid reflecting the velocity direction is employed to visualize the impact geometry. Experiments are performed for soft and hard workpieces to justify the external impulse model in the sawing task. It is demonstrated through simulation and experiment that the proposed external impulse model is effective to characterize the impact property.

  • PDF

A Flexible Conveying System using Hybrid Control under Distributed Network

  • Yeamglin, Theera;Charoenseang, Siam
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.583-586
    • /
    • 2002
  • In this research, we propose a flexible conveying system (FCS) which consists of multiple arrays of cells. Each cell is a wheel driven by a two degree-of-freedom mechanism. The direction and velocity of cell are controlled based on the concept of hybrid control under a distributed network. Each cell has its own controller under a subsumption architecture for low-level control. A cell communicates with its four neighboring cells to manipulate n targeted object towards its desired position. The high-level control assigns a desired position and direction of the object to each cell. The path of each object is generated by many supporting cells. Moreover, the FCS can handle multiple objects simultaneously. To study the flexible conveying system, a GUI-based simulator of flexible conveying system is constructed. The simulated results show that the system can handle multiple objects independently and simultaneously under the proposed hybrid control architecture.

  • PDF

Joint Trajectory Planning for Cooperation of Two Redundant Robot Arms (두대의 영유자유도 로보트의 협력을 위한 관절궤적 결정)

  • 채영석;임준홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.10
    • /
    • pp.50-58
    • /
    • 1993
  • The problem of trajectory planning in two redundant robot systems is considered. The trajectory of each robot for the cooperative task is generated so that the robots assume their optimal configurations while following a given desired task. The cooperative task compatibility in and the weighted sum of manipulabilities are proposed and investigated as quality measures. The cooperative task compatibility includes the velocity and force transmission charateristics to the task requirements and so it measures the compatibilities of robot postures with respect to a given task. The weighted sum of manipuabilities of robot postures with respect to a given task. The weighted sum of manipulabilities is also considered as a quality measure since it is helpful to avoid singularities. The usefulness of the cooperative task compatibility and the weighted sum of manipulabilities are shown by computer simulation studies.

  • PDF

A Two-dimensional Numerical Simulation of Self-signal Processing Infrared Detectors (자기신호처리 적외선 감지소자의 2차원 수치해석)

  • 조남홍;곽계달
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.52-62
    • /
    • 1995
  • We developed a two-dimensional numerical simulator which can analyze the electrical as well as optical characteristics and evaluate the detection performances of self-signal processing infrared detectors. It solves the poisson equation and the electron, hole current continuity equations including the optical generation and recombination models. To speed up convergency rate. the Newton algorithm is used. Automatic triangular grid generator make it easy to simulate the devices with the various read-out geometries. This simulator can show the variation of spatial resolution which is caused by the transit velocity and transit time dispersion in bifurcate and horn geometries respectively. Also, we calculated the responsivity, noise, and detectivity in respect of the applied electric field and background field-of-view. The results obtained from simulation correspond to those of experiments, and it is verified that horn read-out geometry has the superior spatial resolution and detection performance to bifurcate geometry.

  • PDF