• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.032 seconds

Effects of Visual Information on Joint Angular Velocity of Trunk and Lower Extremities in Sitting and Squat Motion

  • Bu, Kyoung hee;Oh, Tae young
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.89-95
    • /
    • 2015
  • Purpose: The purpose of this study is to determine the effects of visual information on movement time and each angular velocity of trunk and lower extremity joints while healthy adults are in sitting and squat motion. Methods: Participants consisted of 20 healthy male and female adults; movement time and each angular velocity of trunk, pelvis, hip, knee and ankle of sitting and squat motion according to common vision, visual task and visual block were analyzed using a three dimensional motion analysis system. Results: Each angular velocity of the trunk, pelvis, hip, knee and ankle in phase 2 of the sitting showed significant difference according to the types of visual information (p<0.05). Movement time and each angular velocity of pelvis and hip in phase 2 of squat motion showed significant difference according to the types of visual information (p<0.05). According to the common vision, each angular velocity of knee and ankle in phase 1 was significantly fast in sitting (p<0.05). According to the common vision, each angular velocity of trunk, pelvis, hip, knee, and ankle in phase 2 was significantly fast in sitting (p<0.05). Conclusion: Visual information affects the angular velocity of the motion in a simple action such as sitting, and that in more complicated squat motion affects both the angular velocity and the movement time. In addition, according to the common vision, visual task and visual block, as angular velocities of all joints were faster in sitting than squat motion.

Target Velocity Estimation using FFT Method

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • This paper studied a method of estimating target information using a radar in wireless communication. Position information on the target can be estimated angle, distance and velocity. The velocity information can be estimated since the Doppler frequency is changed in the moving target. The signal incident on the receiving array antenna is multiplied by the delay time and the reference signal to represent the output signal. This output signal is estimated by applying FFT (Fast Fourier Transform) after calculating signal correlation through correlation integrator. Since the output signal must be calculated within the correlator, it should be processed with the Dwell time. The correlation signal of the correlation integrator outside this Dwell time is indicated by the velocity measurement error. The FFT is applied to the signal that has passed through the correlated integrator in order to estimate the distance of the signal. The Doppler resolution must be improved because the FFT estimates target information using the Doppler information. The Doppler resolution decreases with increasing the integration time. The velocity information estimation should have no spread of the velocity. As a result of the simulation, there was no spread of the target velocity in this study.

A Study of High Precision Constant Velocity Control for Spiral Servo Writing in Hard Disk Drive (하드디스크 드라이브의 Spiral Servo Writing을 위한 초정밀 등속 제어 기법 연구)

  • Cho, K.N;Kang, H.J;Lee, C.W;Chung, C.J;Sim, J.S
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.99-107
    • /
    • 2005
  • According to recent trend, hard disk drive(HDD) has been smaller and less weight. Therefore, it needs new method of writing position information. In this thesis, a new controller that is suitable for SSW is proposed. The controller accepted SSW technology that is used to write position information in current HDD industry. The important condition to perform SSW is to reach constant velocity decided from the head velocity profile as fast as possible. The constant velocity decides the positional accuracy of spiral pattern and setup time decides the capacity of HDD. The head velocity profile as a reference signal must be designed not to cause resonance mode. The proposed controller was designed with consideration of these 3 elements, and it properly works for SSW. The velocity profile designed with SMART control not only minimizes the jerk, but also does not cause the resonance mode of a plant. After designing a conventional PID controller, it compared with electrical spring technique and ZPET technique.

  • PDF

Target Tracking Control of Mobile Robots with Vision System in the Absence of Velocity Sensors (속도센서가 없는 비전시스템을 이용한 이동로봇의 목표물 추종)

  • Cho, Namsub;Kwon, Ji-Wook;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.852-862
    • /
    • 2013
  • This paper proposes a target tracking control method for wheeled mobile robots with nonholonomic constraints by using a backstepping-like feedback linearization. For the target tracking, we apply a vision system to mobile robots to obtain the relative posture information between the mobile robot and the target. The robots do not use the sensors to obtain the velocity information in this paper and therefore assumed the unknown velocities of both mobile robot and target. Instead, the proposed method uses only the maximum velocity information of the mobile robot and target. First, the pseudo command for the forward linear velocity and the heading direction angle are designed based on the kinematics by using the obtained image information. Then, the actual control inputs are designed to make the actual forward linear velocity and the heading direction angle follow the pseudo commands. Through simulations and experiments for the mobile robot we have confirmed that the proposed control method is able to track target even when the velocity sensors are not used at all.

Doppler Signal Analysis for Low Velocity Measurement (저 유속 측정에서의 도플러 해석 기법)

  • Lee, Jonggil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.956-957
    • /
    • 2014
  • In a fluid velocity measurement radar, the velocity information can be extracted from Doppler spectrum estimates of the return signal. However, the Doppler frequency ranges are too low for the case of low velocity profile measurements resulting in the serious effects in the velocity measurement. Therefore, the improved method is analyzed to overcome this problem.

  • PDF

A Motion-Control Chip to Generate Velocity Profiles of Desired Characteristics

  • Cho, Jung-Uk;Jeon, Jae-Wook
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.563-568
    • /
    • 2005
  • A motion-control chip contains major functions that are necessary to control the position of each motor, such as generating velocity command profiles, reading motor positions, producing control signals, driving several types of servo amplifiers, and interfacing host processors. Existing motion-control chips can only generate velocity profiles of fixed characteristics, typically linear and s-shape smooth symmetric curves. But velocity profiles of these two characteristics are not optimal for all tasks in industrial robots and automation systems. Velocity profiles of other characteristics are preferred for some tasks. This paper proposes a motion-control chip to generate velocity profiles of desired acceleration and deceleration characteristics. The proposed motion-control chip is implemented with a field-programmable gate array by using the Very High-Speed Integrated Circuit Hardware Description Language and Handel-C. Experiments using velocity profiles of four different characteristics will be performed.

  • PDF

Mouthpiece Modeling of the Electronic Wind Instrument Using a Propeller and Linear Analysis for Fast Tracking Wind Velocity (빠른 바람의 세기 추적을 위한 프로펠러를 사용한 전자 관악기 취구의 선형 모델링)

  • Kwak, Jae-Hyung;Lee, Gang-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.295-301
    • /
    • 2010
  • In this paper, we propose a new mouthpiece model for the electronic wind instrument using a propeller and linear analysis for fast tracking wind velocity blown. This method is a modification of the velocity anemometer for fast tracking wind velocity by the propeller's angular velocity (speed of revolution). In the case of velocity anemometer, wind velocity is calculated using the property that wind velocity is in proportion to the propeller's angular velocity. However, wind velocity and angular velocity of the propeller are not in one-one correspondence because wind velocity takes some transitional time for the expected wind velocity to be calculated from angular velocity. To resolve this problem, we propose a method for finding the impulse response of the system which can be considered as a linear system, and for estimating the wind velocity by deconvolving the propeller's angular velocity with the impulse response. To experiment and to prove the validity of the proposed system, we designed a mouthpiece model which consists of a motor, a propeller and an encoder. The result of estimated wind velocity in this method showed that this system is about eightfold faster than the method by the conventional velocity anemometer.

Method for Measuring of Golf Ball's Speed Using The Law of Conservation of Momentum (운동량 보존 법칙을 이용한 골프공의 속도 측정 방법)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Rhee, Yang-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.71-78
    • /
    • 2013
  • In this paper, the golf club head hit the golf ball moves at a constant velocity, then move in the same direction at a constant velocity of the golf club head, the velocity of the golf ball was hitting and flying the golf ball is calculated. If velocity is different before you hit the golf ball, each of the velocity of the golf ball is calculated. The purpose of this paper is to make it easy to find out the velocity of a club's head, the mass of a golf ball, the velocity or the direction of a golf ball after impact in playing golf. The results of the experiment are represented in tables and figures. And we also propose the comparison analysis between our research and other traditional ones, the implications, and futhur studies in the future. The results of this study, unlike other studies, it was can be seen that measurements of several factors superior to the measurement of the velocity of the golf ball.

Implementation of VGPO/VGPI Velocity Deception Jamming Technique using Phase Sampled DRFM (위상 샘플방식 DRFM을 이용한 VGPO/VGPI 속도기만 재밍기법 구현)

  • Kim, Yo-Han;Moon, Byung-Jin;Hong, Sang-Guen;Sung, Ki-Min;Jeon, Young-Il;Na, In-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.955-961
    • /
    • 2021
  • In modern warfare, the importance of electronic warfare, which carries out a mission that using radio wave to find out enemy information or to protect ally information, has increased. Radar jamming technique is one of the most representative techniques of EA(Electronic Attack), it disturbs and deceives enemy radar system in order to secure ally location information. Velocity deception jamming technique, which is one of the radar jamming techniques, generally operate against pulse-doppler radar which use doppler effect in order to track target's velocity and location. Velocity Deception Jamming Technique can be implemented using DRFM(Digital Radio Frequency Memory) that performs Frequency Modulation. In this paper, I describe implementation method of VGPO/VGPI(Velocity Gate Pull-Off/Pull-In) velocity deception jamming technique using phase-sampled DRFM, and verify the operation of VGPO/VGPI velocity deception jamming technique with board test under signal injection condition.

Robust Velocity Estimation of an Omnidirectional Mobile Robot Using a Polygonal Array of Optical Mice

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.713-721
    • /
    • 2008
  • This paper presents the robust velocity estimation of an omnidirectional mobile robot using a polygonal array of optical mice that are installed at the bottom of the mobile robot. First, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. The least squares velocity estimate of a mobile robot is then obtained, which becomes the same as the simple average for a regular polygonal arrangement of optical mice. Next, several practical issues that need be addressed for the use of the least squares mobile robot velocity estimation using optical mice are investigated, which include measurement noises, partial malfunctions, and imperfect installation. Finally, experimental results with different number of optical mice and under different floor surface conditions are given to demonstrate the validity and performance of the proposed least squares mobile robot velocity estimation method.