• Title/Summary/Keyword: velocity for the feedback control

Search Result 261, Processing Time 0.028 seconds

Dual Mode Feedback-Controlled Cycling System for Upper Limb Rehabilitation of Children with Cerebral Palsy

  • Cho, Seung-Yeon;Kim, Jihun;Seo, Seong-Won;Kim, Sung-Gyung;Kim, Jaehyo
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.231-236
    • /
    • 2019
  • Background/Objectives: This paper proposes a dual mode feedback-controlled cycling system for children with spastic cerebral palsy to rehabilitate upper extremities. Repetitive upper limb exercise in this therapy aims to both reduce and analyze the abnormal torque patterns of arm movements in three- dimensional space. Methods/Statistical analysis: We designed an exercycle robot which consists of a BLDC motor, a torque sensor, a bevel gear and bearings. Mechanical structures are customized for children of age between 7~13 years old and induces reaching and pulling task in a symmetric circulation. The shafts and external frames were designed and printed using 3D printer. While the child performs active/passive exercise, angular position, angular velocity, and relative torque of the pedal shaft are measured and displayed in real time. Findings: Experiment was designed to observe the features of a cerebral palsy child's exercise. Two children with bilateral spastic cerebral palsy participated in the experiment and conducted an active exercise at normal speed for 3 sets, 15 seconds for each. As the pedal reached 90 degrees and 270 degrees, the subject showed minimum torque, in which the child showed difficulty in the pulling task of the cycle. The passive exercise assisted the child to maintain a relatively constant torque while visually observing the movement patterns. Using two types of exercise enabled the child to overcome the abnormal torque measured in the active data by performing the passive exercise. Thus, this system has advantage not only in allowing the child to perform the difficult task, which may contribute in improving the muscle strength and endurance and reducing the spasticity but also provide customizable system according to the child's motion characteristic. Improvements/Applications: Further study is needed to observe how passive exercise influences the movement characteristics of an active motion and how customized experiment settings can optimize the effect of pediatric rehabilitation for spastic cerebral palsy.

A Cartesian Space Adaptive Control Scheme for Robot Manipulators (로봇 매니퓰레이터의 직교공간 적응제어 방식)

  • Hwang, Seok-Yong;Lyou, Joon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

High speed and accurate positioning control of robot manipulator by using disturbance observer (외란 관측기를 이용한 직접 구동형 로봇의 고속.고정도 제어)

  • 서일홍;엄광식;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.948-951
    • /
    • 1996
  • High-speed/high-accuracy control of robot manipulator becomes more and more stringent because of the external disturbance and nonlinear characteristics. To meet this ends, lots of control strategies were proposed in the past such as the computed torque control, the nonlinear decoupled feedback control, and adaptive control. These control methods need computations of the inverse dynamics and require much computational effort. Recently, a disturbance observer with unmodeled robot dynamics and simple algorithms to motion control have been widely studied. This paper proposes a motor control strategy based on the disturbance observer which estimate the disturbance of each joint from input-output relationship of the actuator and eliminate the estimated disturbance including the torque due to modeling errors, coupling force, nonlinear friction, and so on. To apply the disturbance observer to closedloop system like velocity servo pack, the modified control structure was constructed and shown that it is equivalent to a disturbance observer in open-loop system. Finally, using the proposed approach, simulation and experiments were carried out for a two-degree-of-freedom SCARA type direct drive robot, and show some results to verify the effectiveness of the proposed algorithms.

  • PDF

A Study on the Control Method for the Tool Path of Aspherical Surface Grinding and Polishing (비구면 연삭 및 연마를 위한 공구 경로 제어에 관한 연구)

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.113-120
    • /
    • 2006
  • This paper proposed the control algorithm fur aspheric surface grinding and was verified by the experiment. The functions of the algorithm were simultaneous control of the position and interpolation of the aspheric curve. The non-linear formula of the tool position was derived from the aspheric equations and the shape of the tool. The function was partitioned by an certain interval and the control parameters were calculated at each control section. The movement in a session was interpolated with acceleration and velocity. The position error was feed-backed by rotary encorder. The concept of feedback algorithm was correcting position error by increasing or decreasing the speed. In the experiment, two-axis machine was controlled to track the aspheric surface by the proposed algorithm. The effect of the control and process parameters was monitored. The result showed that the maximum tracking error was under sub-micro level for the concave and convex surfaces.

The design of neural network adaptive control system (신경회로망 적응제어시스템의 설계)

  • 김용택;김용호;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.150-155
    • /
    • 1993
  • The neural network MRAC system is presented. The purpose of this paper is applied to a plant that is to be controlled in a strongly nonlinear environment. The proposed system has a learning and adaptive ability in the varying environment by using the back-propagation learning algorithm based on Lyapunov stability theory. N.N. regulator is a part of overall system and is guaranteed to be stable in initial stage. Nonlinear terms of the varying mass, colilori, centifugal, and gravity are compensated for by feedforward N.N. regulator. And the feedback controller (adaptive mechanism) works to eliminate errors of position, velocity which the feedforward controller cannot compensate for. Finally, the proposed system will be demonstrated by simulation of a two d.o.f robot manipulator.

  • PDF

Dynamic interaction analysis between actively controlled Maglev and bridge (능동제어되는 자기부상열차와 교량의 동적상호작용해석)

  • Lee, Jun-Seok;Kwon, Soon-Duck;Yu, In-Ho;Kim, Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.555-560
    • /
    • 2008
  • Dynamic interaction analysis between actively controlled Maglev and bridge is carried out. For this, dynamic governing equation for 2-dof Maglev vehicle and optimal feedback control scheme of DOFC are developed. And then the dynamic effect of the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge to the both of air-gap variations of UTM-01 maglev vehicle and bridge center maximum displacement response are investigated. From the results of numerical simulation, it is found that the 1st natural frequency of bridge, vehicle/bridge mass ratio and damping coefficient of bridge does not affect greatly within design velocity of the vehicle.

  • PDF

Intelligent control of pneumatic actuator using MPWM (MPWM을 이용한 공압 실린더의 지능제어)

  • 송인성;표성만;안경관;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.530-535
    • /
    • 2002
  • Pneumatic control system has been applied to build many industrial automation systems. But most of them are sequence control type because of their low costs, safety, reliability, etc. Pneumatic servo system is rarely applied to real industrial fields because accurate position control is very difficult due to its nonlinearity and compressibility of air. In pneumatic servo control system, a pneumatic servo valve can be applied, But it is very expensive and has no advantage of low cost compared with a common pneumatic system. This paper is concerned with the accurate position control of a rodless pneumatic cylinder using on/off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem, switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated through experiments nth various loads.

  • PDF

Trajectory Optimization and the Control of a Re-entry Vehicle during TAEM Phase using Artificial Neural Network (재진입 비행체의 TAEM 구간 최적궤적 설계와 인공신경망을 이용한 제어)

  • Kim, Jong-Hun;Lee, Dae-Woo;Cho, Kyeum-Rae;Min, Chan-Oh;Cho, Sung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.350-358
    • /
    • 2009
  • This paper describes a result of the guidance and control for re-entry vehicle during TAEM phase. TAEM phase (Terminal Aerial Energy Management phase) has many conditions, such as density, velocity, and so on. Under these conditions, we have optimized trajectory and other states for guidance in TAEM phase. The optimized states consist of 7 variables, down-range, cross range, altitude, velocity, flight path angle, vehicle's azimuth and flight range. We obtained the optimized reference trajectory by DIDO tool, and used feedback linearization with neural network for control re-entry vehicle. By back propagation algorithm, vehicle dynamics is approximated to real one. New command can be decided using the approximated dynamics, delayed command input and plant output, NARMA-L2. The result by this control law shows a good performance of tracking onto the reference trajectory.

High-Performance Tracking Controller Design for Rotary Motion Control System (회전운동 제어시스템을 위한 고성능 추적제어기의 설계)

  • Kim, Youngduk;Park, Su Hyeon;Ryu, Seonghyun;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.43-51
    • /
    • 2021
  • A robust tracking controller design was developed for a rotary motion control system. The friction force versus the angular velocity was measured and modeled as a combination of linear and nonlinear components. By adding a model-based friction compensator to a nominal proportional-integral-derivative controller, it was possible to build a simulated control system model that agreed well with the experimental results. A zero-phase error tracking controller was selected as the feedforward tracking controller and implemented based on the estimated closed-loop transfer function. To provide robustness against external disturbances and modeling uncertainties, a disturbance observer was added in the position feedback loop. The performance improvement of the overall tracking controller structure was verified through simulations and experiments.

Effects of Pressure Biofeedback Unit Application on Muscle Strength and Balance in Total Knee Arthroplasty Patients during Exercise for Strengthening the Knee Extensor Muscle (무릎 폄근 강화 운동 동안 압력 생체되먹임 장비 적용이 무릎관절 전치환술 환자들의 근력과 균형에 미치는 영향)

  • Park, Jin;Park, Han-Kyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.101-108
    • /
    • 2021
  • Purpose : The purpose of this study is to verify the effect of selective muscle strengthening of the knee joint extensor muscles using a pressure biofeedback unit to improve knee extensor strength and the balance ability of total knee replacement patients. Through this, we tried to provide clinical information. Methods : In this study, 12 patients with total knee replacement were recruited from a rehabilitation hospital. They were divided into two groups: a feedback group (n=6) and a control group (n=6). All patients received 30 minutes of continuous passive motion and leg-strengthening exercises for 15 minutes five times a week for two weeks. Subjects performed knee extension exercises with or without biofeedback units in the sitting position. The knee extensor strength and balance ability were measured before and after exercise. Knee extensor strength was measured by Biodex system 3 and balance ability was measured by Balancia software. Results : Both the experimental group and the control group showed a significant difference in the muscle strength of the knee joint extensor muscles after intervention (p<.05). In comparison, the experimental group showed a significant difference than the control group (p<.05). Both the experimental group and the control group showed a significant difference in the velocity average, path length, area 95 % center of pressure (COP), weight distribution, five times sit to stand test (FTSST) after intervention. In comparison, the experimental group showed a significant difference in velocity average, area 95 % COP, and FTSST than the control group (p<.05). Conclusion : In order to strengthen the knee extensor muscle and improve the balance ability in total knee replacement patients, it is necessary to consider providing pressure biofeedback unit during leg strengthening exercises.