• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.042 seconds

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

ASYMMETRY OF MAGNETIC HELICITY FLUX IN EMERGING BIPOLAR ACTIVE REGIONS

  • Yang, Dan;Jiang, Yunchun;Yang, Jiayan;Bi, Yi;Yang, Bo
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.3
    • /
    • pp.105-113
    • /
    • 2014
  • We apply differential affine velocity estimator (DAVE) to the Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) 12-min line-of-sight magnetograms, and separately calculate the injected magnetic helicity for the leading and the following polarities of nine emerging bipolar active regions (ARs). Comparing magnetic helicity flux of the leading polarity with the following polarity, we find that six ARs studied in this paper have the following polarity that injected more magnetic helicity flux than that of the leading polarity. We also measure the mean area of each polarity in all the nine ARs, and find that the compact polarity tend to possess more magnetic helicity flux than the fragmented one. Our results confirm the previous studies on asymmetry of magnetic helicity that emerging bipolar ARs have a polarity preference in injecting magnetic helicity. Based on the changes of unsigned magnetic flux, we divide the emergence process into two evolutionary stages: (1) an increasing stage before the peak flux and (2) a constant or decreasing stage after the peak flux. Obvious changes on magnetic helicity flux can be seen during transition from one stage to another. Seven ARs have one or both polarity that changed the sign of magnetic helicity flux. Additionally, the prevailing polarity of the two ARs, which injects more magnetic helicity, changes form the following polarity to the leading one.

Bayesian estimation of kinematic parameters of disk galaxies in large HI galaxy surveys

  • Oh, Se-Heon;Staveley-Smith, Lister
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.62.2-62.2
    • /
    • 2016
  • We present a newly developed algorithm based on a Bayesian method for 2D tilted-ring analysis of disk galaxies which operates on velocity fields. Compared to the conventional ones based on a chi-squared minimisation procedure, this new Bayesian-based algorithm less suffers from local minima of the model parameters even with high multi-modality of their posterior distributions. Moreover, the Bayesian analysis implemented via Markov Chain Monte Carlo (MCMC) sampling only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature is essential for performing kinematic analysis of an unprecedented number of resolved galaxies from the upcoming Square Kilometre Array (SKA) pathfinders' galaxy surveys. A standalone code, the so-called '2D Bayesian Automated Tilted-ring fitter' (2DBAT) that implements the Bayesian fits of 2D tilted-ring models is developed for deriving rotation curves of galaxies that are at least marginally resolved (> 3 beams across the semi-major axis) and moderately inclined (20 < i < 70 degree). The main layout of 2DBAT and its performance test are discussed using sample galaxies from Australia Telescope Compact Array (ATCA) observations as well as artificial data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies.

  • PDF

A Study on the Fire Fighting General Index for Fire Fighting of Crowded Wooden Building Cultural Asset (군집 목조 건축문화재의 화재대응을 위한 소방방재 종합지수 연구)

  • Kwon, Heung-Soon;Lee, Jeong-Soo
    • Journal of architectural history
    • /
    • v.21 no.2
    • /
    • pp.37-52
    • /
    • 2012
  • This research has set up the fire fighting general index for Fire fighting of Crowded Wooden Building Cultural Asset which is composed of traditional wooden building instinct or complex. The results of this study are as follows. First, Fire fighting general index for crowded wooden building cultural asset, it is necessary to set fire fighting priority by considering fire risk and cultural asset characteristic and establish the system to cope with fire disaster in the most effective way by arranging facilities with restricted resource. Second, Fire risk is the index to draw fire and spread risk of cultural asset by applying index calculation processes such as fire load, burning velocity and ignition material spread characteristic to various aspects such as individual building and complex and combining their results. Cultural asset importance index consists of individual building evaluation, publicity security degree, area importance evaluation and historical landscape degree evaluation. Third, for each index combination process, weight of each index is drawn on the basis of AHP analysis result that is performed to the specialists of related fields. The formula to apply and combine it is prepared to apply the model to include meaning of each index and comparative importance degree.

Experimental Study on the Performance of a Forward-Curved Centrifugal Fan for an Automotive Air-Conditioner (자동차 에어컨용 전곡형 원심 송풍기의 공력성능 분석)

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.122-128
    • /
    • 2000
  • Aerodynamic optimization of an automotive air-conditioning blower is a hard task because of the highly complex flow phenomena related to three-dimensional flow separations and the unsteady nature caused by the interaction between primary and secondary air flows throughout the fan. In this paper, an aerodynamic study on a forward-curved centrifugal fan has been carried out Firstly we obtained the fan performance curves versus flow rates showing its unstable nature in the surging operation range. Secondly aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage using a 5-hole pilot probe, at different operating conditions. Surface flow pattern near the cut-off area exhibits similar flow behavior above the best efficiency operating point, although the pressure level increases substantially with the Increase of flow rate. Vorticity in the casing passage flow occurs in all (low rates, downstream from the r-Z plane $\theta$=120 deg., where the position of its core changes with the circumferential location. Although complex, the general flow behavior were common, giving insight in its main aerodynamic features.

  • PDF

Analysis on the Flow and the Byproduct Particle Trajectory of Roots Type Vacuum Pump (루츠식 진공 펌프의 유동 및 부산물 입자 궤적에 대한 해석)

  • Lee, Chan;Kil, Hyun-Gwon;Noh, Myung-Keun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.18-23
    • /
    • 2011
  • A CFD analysis method is developed and applied for investigating the gas flow and the byproduct particle trajectory in Roots type vacuum pump. The internal fluid flow and thermal fields between the rotors and the housing of vacuum pump are analyzed by using the dynamic mesh, the numerical methods for unsteady 2-D Navier-Stokes equation and the standard k-$\varepsilon$ turbulence model of the Fluent code. Coupled with the flow simulation results, the particle trajectory of the byproduct flowing into the pump with gas stream is analyzed by using discrete phase modeling technique. The CFD analysis results show the pressure, the velocity and the temperature distributions in pump change abruptly due to the rotation of rotors, and back flows are produced due to the strong reverse pressure gradients at rotor/rotor and rotor/housing clearances. The predicted byproduct particle trajectory results also show the particles impinge on the clearance surfaces between the housing and the rotor of pump and then may form the deposit layer causing the failure of pump.

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

On the Sediment Transport Characteristics of the Bottom Turbulent Boundary Layer (저면난류경계층(底面亂流境界層)의 저질이동특성(底質移動特性))

  • Kim, Nam Hyeong;Kiyoshi, Takikawa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.267-277
    • /
    • 1993
  • A finite element method(FEM) is presented and applied to the two-dimensional bottom turbulent boundary layer. The time-dependent incompressible motion of a viscous fluid is formulated by using the well-known Navier-Stokes equations and vorticity equation in terms of the velocity and pressure fields. The general numerical formulation is based on Galerkin method and solved by introducing the mixing length theory of Prandtl for eddy kinematic viscosity of a turbulent flow field. Numerical computations of the transport of sediment on an arbitrary sea-bed due to wave motion in the turbulent boundary layer are carried out. The results obtained by the FEM made clear the difference in characteristic features between the boundary layer due to oscillatory flow and the boundary layer due to wave motion.

  • PDF

Thermal and Flow Analysis in a Proton Exchange Membrane Fuel Cell

  • Jung, Hye-Mi;Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1358-1370
    • /
    • 2003
  • The effects of anode, cathode, and cooling channels for a Proton Exchange Membrane Fuel Cell (PEMFC) on flow fields have been investigated numerically. Continuous open-faced fluid flow channels formed in the surface of the bipolar plates traverse the central area of the plate surface in a plurality of passes such as a serpentine manner. The pressure distributions and velocity profiles of the hydrogen, air and water channels on bipolar plates of the PEMFC are analyzed using a two-dimensional simulation. The conservation equations of mass, momentum, and energy in the three-dimensional flow solver are modified to include electro-chemical characteristics of the fuel cell. In our three-dimensional numerical simulations, the operation of electro-chemical in Membrane Electrolyte Assembly (MEA) is assumed to be steady-state, involving multi-species. Supplied gases are consumed by chemical reaction. The distributions of oxygen and hydrogen concentration with constant humidity are calculated. The concentration of hydrogen is the highest at the center region of the active area, while the concentration of oxygen is the highest at the inlet region. The flow and thermal profiles are evaluated to determine the flow patterns of gas supplied and cooling plates for an optimal fuel cell stack design.

HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS (이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법)

  • Kim, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF