• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.028 seconds

Turbulent Particle Dispersion Effects on Electrostatic Precipitation (전기집진에서의 난류 입자 이산)

  • Choe, Beom-Seok;Fletcher C.A.J
    • 연구논문집
    • /
    • s.28
    • /
    • pp.39-47
    • /
    • 1998
  • Industrial electrostatic precipitation is a very complex process, which involves multiple-way interaction between the electric field, the fluid flow, and the particulate motion. This paper describes a strongly coupled calculation procedure for the rigorous computation of particle dynamics during electrostatic precipitation. The turbulent gas flow and the particle motion under electrostatic forces are calculated by using the commercial computational fluid dynamics (CFD) package FLUENT linked to a finite-volume solver for the electric field and ion charge. Particle charge is determined from both local electrical conditions and the cell residence time which the particle has experienced through its path. Particle charge density and the particle velocity are averaged in a control volume to use Lagrangian information of the particle motion in calculating the gas and electric fields. The turbulent particulate transport and the effects of particulate space charge on the electrical current flow are investigated. The calculated results for poly-dispersed particles are compared with those for mono-dispersed particles, and significant differences are demonstrated.

  • PDF

On the Circulation in the Jinhae Bay using the Princeton Ocean Model -I. Characteristic in Vertical Tidal Motion-

  • Hong Chul-hoon
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.168-179
    • /
    • 1998
  • Circulation in the Jinhae Bay in the southern sea of Korea is examined using the Princeton Ocean Model (POM) with a free surface in a sigma coordinate, governed by primitive equations. The model well corresponds to the time series of the observed velocities at several layers obtained from a long-term mooring observation. In the residual velocity field of the model, persistent downward flow fields are formed along the central deep regions in the bay, and they are caused by bottom topographic effect. In addition, a comparison between a depth-averaged (2D) model and the POM is given, and a dependance of the results on bottom drag coefficient is also examined.

  • PDF

Modelling of Swimming Ability Limits for Marine Fish

  • KIM Yong-Hae;WARDLE Clement S.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.929-935
    • /
    • 1997
  • The total energy of fish movement and the maximum burst swimming speed were estimated and formulated in accordance with body length and water temperature for several species in fisheries by empirical methods and also by using published results. Under the assumption of swimming energy reserve of a fish at the initial rest state, the swimming endurance of fish with different body lengths, swimming speeds and angular velocity was calculated using the relevant equations under similar conditions in tank experiments as well as natural conditions in field. Relative swimming energy efficiency or the transition swimming speed between red and white muscle for energy consumption was represented as a trigonometric function of swimming speed ratio. Therefore, this model does closely approach the actual swimming abilities and their limits especially in relation to the fishing gear operation and allow for the greater vitality of the wild fish in the fields.

  • PDF

A Numerical Study on Heat Transfer of External Surface of Ambient Evaporators (액화가스용 기화기의 외측 열전달에 대한 수치해석 연구)

  • Seo, Dongmin;Ko, Dong Guk;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.1
    • /
    • pp.116-119
    • /
    • 2017
  • In this paper, natural convection around the ambient evaporator was numerically studied using commercial computational fluid dynamics software. From the simulations, temperature and velocity fields around the evaporator were found as a function of evaporator size and liquefied gas flow rate. The heat transfer coefficient at the external surface of the evaporator was also calculated from the simulation results. In order to give the heat transfer coefficient for various conditions, correlation between Rayleigh number and Nusselt number was proposed.

  • PDF

Circulation in the Southwestern East Sea (Japan Sea) in July 1993 Determined by an Inverse Method

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Seung, Young-Ho;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.87-97
    • /
    • 1999
  • To estimate absolute transports by advection in the southwestern East Sea (Japan Sea), an inverse method was applied to CTD data obtained in July 1993. The relative velocities are calculated using the thermal wind equation. The inverse model was formulated to obtain a reference velocity based on the mass conservation in each of four vertical layers within a region enclosed by hydrographic sections and the coastal boundary. The flow patterns in the surface layer are clockwise and anti-clockwise in the regions south and northwest of Ulleung Island, respectively, and a strong northward flow appears in between them. In the second layer, the flow fields are generally weak. The inverse calculation yields the southward flow along the coast, and this suggests that the subsurface low salinity water in the Ulleung Basin is supplied by the southward transport along the east coast of Korea.

  • PDF

Improved spectral line measurements of the SDSS galaxy spectra

  • Oh, Kyu-Seok;Sarzi, Marc;Yi, Suk-Young
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.35.1-35.1
    • /
    • 2009
  • We have established a database of galaxy spectral line strengths for the SDSS database using an improved line measuring method. Our work includes the entire SDSS DR7 galaxies within redshift of 0.2. The absorption line strengths measured by the SDSS pipeline are seriously contaminated by emission filling. Our code, GANDALF (gas and absorption line fitting code) performs more accurate measurements by effectively separating emission lines from absorption lines. A significant improvement has also been made on the velocity dispersion measurement, more notably in late-type galaxies. We have also identified a number of broad line region galaxies which were misclassified as normal galaxies by the SDSS pipeline. We developed an effective method measuring their line strengths. The database will be provided with new parameters that are indicative of the line strength measurement quality. In addition, we made galaxy templates for the Hubble sequence. The database will be useful for many fields of galaxy studies including star formation and AGN activities.

  • PDF

NUMERICAL MODELING OF WIRE ELECTROHYDRODYNAMIC FLOW IN A WIRE-PLATE ESP

  • Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • Numerical modeling of the flow velocity fields for the near corona wire electrohydrodynamic (EHD) flow was conducted. The steady, two-dimensional momentum equations have been computed for a wire-plate type electrostatic precipitator (ESP). The equations were solved in the conservative finite-difference form on a fine uniform rectilinear grid of sufficient resolution to accurately capture the momentum boundary layers. The numerical procedure for the differential equations was used by SIMPLEST algorithm. The Phoenics (Version 3.5.1) CFD code, coupled with Poisson's electric field, ion transport equations and the momentum equation with electric body force were used for the numerical simulation and the Chen-Kim ${\kappa}-{\varepsilon}$ turbulent model numerical results that an EHD secondary flow was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode ($Re_{cw}=12.4$). Secondary flow vortices caused by the EHD increases with increasing discharge current or EHD number, hence pressure drop of ESP increases.

The Numerical Analysis on In-cylinder Flow Fields of an Axisymmetric Engine Using $K-{\varepsilon}-{\tau}$ Turbulence Model ($K-{\varepsilon}-{\tau}$ 난류모델을 이용한 축대칭 엔진 실린더내 유동장의 수치해석)

  • 최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.711-718
    • /
    • 1999
  • Current turbulence models including modified $K-{\varepsilon}-{\tau}$ turbulence model do not predict compression effect on turbulence accurately in an internal combustion engine. The $K-{\varepsilon}-{\tau}$ turbulence model was suggested to improve the predictability of compression effect by We et al. In this paper a numeri-cal study was performed to clarify the applicability of the $K-{\varepsilon}-{\tau}$ turbulenc model to the calculation of the in-cylinder flow of an axisymmetric engine. THe results using $K-{\varepsilon}-{\tau}$ turbulence model are compared to those from the modified $K-{\varepsilon}-{\tau}$ turbulence model and experimental data. The mean veloc-ity and rms velocity profiles using $K-{\varepsilon}-{\tau}$ turbulence model showed a better agreement with an experimental data than those of modifid $K-{\varepsilon}-e$ turbulence model.

  • PDF

Development and Application of a Computer Code for Prediction of Indoor Pollutant Dispersion (새집증후군 저감대책을 위한 실내 오염물질 확산 해석 코드 개발 및 적용)

  • Jeon, Hyun-Jun;Yang, Kyung-Soo;Choi, Choon-Bum
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.735-744
    • /
    • 2010
  • An efficient code has been developed to predict dispersion of indoor air pollutants. The computing capability of the code has been compared with that of a commercial code in a benchmark test. After that, the code has been employed to compute dispersion of a pollutant released from a new furniture, a kind of Sick Building Syndrome(SBS). A sofa which generates formaldehyde is implemented by using an immersed boundary method. Large Eddy Simulation (LES) is employed to obtain time-dependent velocity and concentration fields. LES has been regarded as an academic tool, but the newly-developed code reveals a possibility of application of LES to practical problems, especially dispersion of indoor pollutants.

Turbulent Flow Analysis and Drag Reduction by Riblet Surfaces (리블렛 표면을 이용한 난류 유동해석 및 마찰 저항감소)

  • 윤현식;구본국;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.4
    • /
    • pp.59-67
    • /
    • 2004
  • Direct numerical simulations of turbulent flows over riblet-mounted surfaces are performed to educe the mechanism of drag reduction by riblets. Numerical simulations are performed for flow fields with R $e_$\tau$/=180. For riblet ridge angle $\alpha$=60$^{\circ}$, two different riblet spacings of $s^+/=20 and 40 are used in this study. The computed drag on the riblet surfaces is in good agreement with existing computational and experimental data. The mean velocity profiles show upward and downward shifts in the log-law for drag-decreasing and drag-increasing cases, respectively Turbulence statistics above the riblets are computed and compared with those above a flat plate. The purpose of this study is in two categories: first, to understand the drag reduction mechanism on riblet surface, second, to verify our own code by comparison of the present results with those from previous studies.udies.