• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.026 seconds

Dynamical transition of Josephson vortex lattice in serially stacked ${Bi_2}{Sr_2}{CaCu_2}{O_{8+x}}$ intrinsic Josephson junctions

  • Myung-Ho;Hu-Jong
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.52-55
    • /
    • 2004
  • The inductive coupling theory in serially stacked $Bi_2$$Sr_2$$CaCu_2$$O_{8+x}$ intrinsic Josephson junctions predicts that the lattice structure of the Josephson vortices along the c axis gradually changes from the triangular to the rectangular lattice with increasing the vortex velocity. This lattice transition appears as voltage jumps or sub-branch splitting in the Josephson vortex-flow region of current-voltage characteristics (IVC). We report the IVC in external magnetic fields from 2 to 4 T. The stack, with the lateral size of 1.4${\times}$15 $u\m^2$, was fabricated by using the double-side cleaving technique. The sub-branches in the Josephson vortex-flow region, corresponding to a plasma propagation mode in serially coupled intrinsic Josephson junctions, were also observed in the range of 2∼4T. Switching from one branch to another in Josephson vortex-flow region suggests the structural transition of the moving Josephson vortex lattice.

  • PDF

TIDAL DENSITIES OF GLOBULAR CLUSTERS AND THE GALACTIC MASS DISTRIBUTION

  • Lee, Hyung-Mok
    • Journal of The Korean Astronomical Society
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 1990
  • The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink (1985), we find that such reduction from observed values would make the tidal density (the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.

  • PDF

A study of flow structure of bichromatic waves through PIV analysis

  • Jo, Hyo-Jae;Lee, Seung-Jae;Choi, Je-Eun
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.8-15
    • /
    • 2012
  • An experimental study was carried out in order to understand the kinematics of bichromatic waves. Bichromatic waves are generated in a two-dimensional wave tank, and measured by panorama PIV technique, which allows the flow fields to be captured with respect to a spatial coordinate system. We compared wave profiles and velocities of wave particles obtained by experiment with theoretical results using Stokes 1st and 2nd order waves. The velocity distribution at wave crest and trough of the highest and lowest point of a bichromatic wave are investigated in this study.

Flow Analysis around a Floating Cylinder in a Swirl Flow with a Stereoscopic-PIV (스테레오 PIV에 의한 원관내 선회유동중 실린더형 부유체 주위 유동 특성 해석)

  • Doh, D.H.;Hwang, T.G.;Tanaka, K.;Takei, M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.319-322
    • /
    • 2006
  • The flow characteristics around a floating cylinder in a swirling flow field in a vertical pipe with a length of 600mm and an inner diameter of 100mm is investigated by the use of the Stereoscopic-PIV system. The measurement system consists of two cameras, a Nd-Yag laser and a host computer. Optical sensors(LEDs) were used to detect the location of the floating cylinder and to activate the Stereoscopic-PIV system. A conditional sampling Stereoscopic-PIV system was developed in which the flow fields around the floating cylinder are measured at the events of the activations. It has been verified that the motion of the floating cylinder becomes stable when the azimuthal velocity component of the swirl flow is maintained at stable states.

  • PDF

Flow, Heat and Mass Transfer Analysis for Vertical Grooved Tube Evaporator (흠진 수직 증발관에서 유동 및 열/물질 전달 해석)

  • Park Il-Seouk;Choi Do Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.108-113
    • /
    • 1998
  • A numerical investigation for the flow, heat and mass transfer characteristics of the grooved evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation takes place at the free surface of the inside film. The 3-D transport equations for momentum and energy are solved by using the FVM(Finite Volume Method). The free surface shape is tracked by the moving grid technique satisfying the SCL(Space Conservation Rule). Due to the secondary motion of the fluid, the film thins at the crest, while thickens at the valley. The velocity and temperature fields as well as the amounts of the condensed and evaporated mass have been successfully predicted for various operating conditions and groove shapes.

  • PDF

Study of Flow Analysis of a Mid-size Vehicle in an Engine Room (중형 차량 엔진룸에서의 유동해석에 관한 연구)

  • Lee Dong-Ryul
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.13-19
    • /
    • 2004
  • Flow distribution of a mid-size vehicle in engine room was investigated numerically to analyze the flow performance of given design cases in a front body of the mid-size vehicle. The data analyzed are the mass flow rate at the upper and lower openings, in the radiator, and the degree of non-uniformity of the velocity field at the inlet of the radiator. It is presented that the shape of the front end and the presence of the undercover greatly affect the flow fields, therefore, the flow performance.

FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER (고압 이단 링블로워의 삼차원 유동해석 및 성능평가)

  • Lee, K.D.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.45-48
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the midplane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

  • PDF

DEVELOPMENT OF A COMPUTER CODE FOR PREDICTION OF INDOOR POLLUTANT DISPERSION (새집증후군 저감대책을 위한 실내 오염물질 확산 해석 코드 개발)

  • Jeon, H.J.;Yang, K.S.;Choi, C.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.508-516
    • /
    • 2010
  • An efficient code has been developed to predict dispersion of indoor air pollutants The computing capability of the code has been compared with that of a commercial code inn a benchmark test. After that, the code has been employed to compute dispersion of a pollutant released from a new furniture, a kind of Sick Building Syndrome (SBS). A sofa which generates formaldehyde is implemented by using an immersed boundary method. Large Eddy Simulation (LES) is employed to obtain time-dependent velocity and scalar fields. LES has bee regarded as an academic tool, but the newly-developed code reveals a possibility of application of LES to practical problems, especially dispersion of indoor pollutants.

  • PDF

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(I) Cascade Flow Analysis (유한체적법을 이용한 터보기계 회전차내부의 천이음속.층류 유동해석 (I) 익렬 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.445-451
    • /
    • 1993
  • For the calculation of transonic laminar flow fields in cascades of turbomachinery, a finite volume method employing Jameson's Runge-Kutta integration scheme as a basic algorithm is presented. The cell-vertex scheme introducing half-spacing mesh cells is developed. For the velocity gradients in the stress terms the integration with divergence theorem is used for the average concept. Some numerical results show good agreement with experimental data.

Flow Analysis and Measurement of Pressure Distribution along Inclined Circular Valve Reeds of Reciprocating Compressor (왕복동형 압축기의 경사진 원판형 밸브리드에 대한 압력분포 측정 및 유동해석)

  • Yoon, Jung;Park, Jong-Ho;Kim, Tae-Min;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1942-1947
    • /
    • 2003
  • The valve is the key part which governs the efficiency, noise and reliability of the compressor, so the development of analytical model about valve performance is necessary. As the valve leed is opened and closed by pressure pulsation, the flow characteristic of the refrigerant passing the valve is very important. In the present study, a circular disk with inclination is assumed to be the valve reed of a reciprocating compressor and numerical analysis of three dimensional velocity fields are perfomed for the radial flow through the valve model. The effective flow and force area which are required to predict the efficiency of the valve are measured and compared with the numerical analysis in this research.

  • PDF