• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.028 seconds

Combustion Fluid Field Visualization Using PIV and Related Problems (연소 유동장의 PIV 가시화 측정과 제반 문제들)

  • Kim, Young-Han;Yoon, Young-Bin;Jeung, In-Seuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.504-511
    • /
    • 2000
  • PIV(Particle Image Velocimetry) is a recently developed technique for visualizing the fluid velocity fields. Because it has several advantages over the LDV(Laser Doppler Velocimetry), it became one of the most popular diagnostic tools in spite of its short history. However, its application to combustion is restricted by some problems such as flame illumination, scattered light refraction, particle density variation due to heat release, the combined effect of abrupt change in particle density and fluid velocity on flame contour, and thermophoresis which is particle lagging due to temperature gradient. These problems are expected to be originated from the non-continuous characteristics of flames and the limitations of particle dynamics. In the present study, these problems were considered for the visualization of the instantaneous coaxial hydrogen diffusion flame. And the instantaneous flame contour was detected using particle density difference. The visualized diffusion flame velocity field shows its turbulent and meandering nature. It was also observed that the flame is located inside the outer shear layer and flame geometry is largely influenced by the vorticity.

Numerical analysis of wind field induced by moving train on HSR bridge subjected to crosswind

  • Wang, Yujing;Xia, He;Guo, Weiwei;Zhang, Nan;Wang, Shaoqin
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2018
  • To investigate the characteristics of the combined wind field produced by the natural wind field and the train-induced wind field on the bridge, the aerodynamic models of train and bridge are established and the overset mesh technology is applied to simulate the movement of high-speed train. Based on ten study cases with various crosswind velocities of 0~20 m/s and train speeds of 200~350 km/h, the distributions of combined wind velocities at monitoring points around the train and the pressure on the car-body surface are analyzed. Meanwhile, the difference between the train-induced wind fields calculated by static train model and moving train model is compared. The results show that under non-crosswind condition, the train-induced wind velocity increases with the train speed while decreases with the distance to the train. Under the crosswind, the combined wind velocity is mainly controlled by the crosswind, and slightly increases with the train speed. In the combined wind field, the peak pressure zone on the headstock surface moves from the nose area to the windward side with the increase of wind velocity. The moving train model ismore applicable in analyzing the train induced wind field.

Development of Solenoid RF coil for 4.7 T Magnetic Resonance Velocimeter to Improve Resolution (해상도 향상을 위한 4.7 T 자기공명유속계 용 솔레노이드 RF 코일 개발)

  • Yang, Byungkuen;Cho, Jee-Hyun;Song, Simon
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.2
    • /
    • pp.40-45
    • /
    • 2016
  • Magnetic resonance velocimeter (MRV) is a powerful tool to non-invasively measure the velocity of a fluid flow in various fields ranging from medicine to engineering. However, since the demands for accurate measurement in the solid/liquid interface for cardiovascular diseases and porous media increase, the improvement of spatial resolution is required. In this study, a solenoid RF coil is developed for high spatial resolution measurement. The signal-to-noise ratio in solenoid RF coil is increased seventeen times better than that in commercial coil. Moreover, the velocity distribution of Hagen-Poiseuille flow is measured with in-plane resolution of $36{\mu}m$ by $36{\mu}m$ and the accuracy of the measured velocity is compared with theoretical distribution of the laminar flow. Flow rate calculated by MRV is estimated with the flow rate injected by syringe pump.

A Study on the Sensorless Speed Control and Its Application of DC Motor (DC 모터의 센서리스 속도제어 및 그 응용에 관한연구)

  • 하윤수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 1999
  • DC motors are widely used in many industrial fields as the actuator of the robot and the driving power motors of the electrical vehicle, Usually in the sensors of DC motors such as the encoder the tachogenerator and the potentiometer etc. are applied, But usage of these sensors results in the increased price and operating cost such that the application of the motors are limitted. To solve this problem another method to construct low cost control system is investigates. In this paper a new speed control method for DC motor is proposed. This method uses motor parameters instead of using speed or position sensors. In this way the angular velocity is estimated by the measure-ment values of the armature voltage and current instead of measuring the sensor signal. This paper presents an alorithm for estimating the angular velocity of DC motor The effectiveness of the proposed method is verified by experimental results. Also the applicability of the proposed method is presented by applying to the velocity contol of a wheeled mobile robot.

  • PDF

Identification on the Three-Dimensional Vortical Structures of Impeller Flow by a Multi-Plane Stereoscopic PIV Method (스테레오 PIV 기법에 의한 임펠러 와류유동의 3차원 구조측정)

  • Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.773-780
    • /
    • 2003
  • The three-dimensional spatial structures of impeller flow created by a six bladed Rushton turbine have identified based on the volumetric velocity information from multi-plane stereoscopic PIV measurements. A total of 10 planes with 2 mm space and a 50 mm by 64 mm size of the field of view were targeted. To reduce the depth of focus, we adopted an angle offset configuration which satisfied the Scheimpflug condition. The distortion compensation procedure was utilized during the in situ calibration. Phase-locked instantaneous data were ensemble averaged and interpolated in order to obtain mean 3-D. volumetric velocity fields on a 60 degree sector of a cylindrical ring volume enclosing the turbine blade. Using the equi-vorticity surface rendering, the spatial structure of the trailing vortices was clearly demonstrated. Detail flow characteristics of the radial jet reported in previous studies of mixer flows were easily identified.

A study on development of plasma-arc cutting system with computer-numerical control (컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

Improvement of Natural Ventilation in a Factory Building Using a Velocity Field Measurement Technique (PIV 속도장 측정기법을 이용한 공장 실내환기 개선방안 연구)

  • Im, Hui-Chang;Kim, Hyeong-Beom;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1427-1435
    • /
    • 2001
  • Air movement in wokplaces, whether resulting from a forced ventilation system or naturally occurring airflow, has a significant impact on occupational health. In a huge shipbuilding factory building, typical harmful factors such as fume or vaporized gas from welding and cutting of steel plates, and dusts from grinding give unpleasant feeling. From field data survey, the yearly dominant, wind directions for the shipbuilding factory building tested were northwest, northeast and southeast Among the three wind directions, the ventilation improvement was the worst for the northeastern wind. This study was focused on location of the opening vents in order to utilize the natural ventilation effectively. Instantaneous velocity fields inside the 1/1000 scale-down factory building model were measured using a 2-frame PIV system. The factory building model was embedded in an atmospheric boundary layer simulated in a wind tunnel. The modified vents improve the internal Ventilation flow with increasing the flow speed more than two times, compared with that of present vents.

Internal Structure and Velocity Field of the Impinging Diesel Spray on the Wall (디젤 충돌 분무의 발달 과정 및 내부 유동 특성)

  • Chon, M.S.;Suh, S.K.;Park, S.W.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2005
  • The purpose of this study is to investigate the internal structure of the impinged diesel spray at various experimental conditions. To examine the effect of various factors on the development of a diesel spray impinging on the wall, experiments were conducted at the various Injection pressures, wall distances from the nozzle tip and angles of wall inclination. The PIV system consists of a double pulsed Nd:YAG laser was utilized to analyze the internal flow structure of impinged diesel sprays. The velocity fields from the PIV system were compared with the results measured by the phase Doppler particle analyzer(PDPA)system. The results show that internal flow pattern of the impinged spray was similar with the results from the PDPA system. The radial velocity of the impinged spray was increased with the increase in the injection pressure and near the nozzle-wall distance. The generation of vortex was also promoted with the Increase in angles of wall inclination.

  • PDF

Numerical Study on Uniform-Shear Flow Over a Circular Cylinder (원형실린더를 지나는 균일전단 유동에 관한 수치연구)

  • Choi, Won-Ho;Kang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.139-150
    • /
    • 2005
  • The present study has numerically investigated two-dimensional laminar flow over a circular cylinder with a uniform planar shear, where the free-stream velocity varies linearly across the cylinder. Numerical simulations using the immersed boundary method are performed for the ranges of $50{\le}Re{\le}160,\;K{\le}0.2$, and B=0.1 and 0.05 where Re, K and B are the Reynolds number, the non-dimensionalized velocity gradient and the blockage ratio, respectively. Results show that the flow depends significantly on B as well as Re and K. It is found, especially, that the blockage effect accounts for some causes of apparent discrepancies among previous studies on the flow. With increasing K, the vortex shedding frequency and the mean drag stay nearly constant or slightly decrease whereas the mean lift, acting from the higher-velocity side to the lower, increases linearly. Flow statistics as well as instantaneous flow fields are presented to identify the characteristics of the flow and then to understand the underlying mechanism.

Stability of Triplet NbTi Cable-In-Conduit Conductor (NbTi 관내 3연선 도체의 안정성)

  • Jang, H.M.;Oh, S.S.;Ha, D.W.;Ha, H.S.;Bae, J.H.;Kim, S.C.;Ryu, K.S.;Wang, Q.L.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.82-84
    • /
    • 1998
  • The normal zone propagation velocity and minimum quench energy (MQE) of cable-in-conduit conductors (CICC) has been investigated at the different background magnetic fields and supercritical helium pressures. The sample CICC of 2 m in length was fabricated with triplet NbTi/Cu strands inserting into a round stainless-steel tube. The heat pulse disturbance with duration time about 400 ms was acted on the center region of the CICC to quench the strands. The normal zone propagation velocity increased with operating current of the CICC. The measured velocity with respect to operation current could be fitted with numerical results.

  • PDF