• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.026 seconds

A Study on the Forging of Gears with lnternal Serrations (내부세레이션홈이 존재하는 외치차 단조에 관한 연구)

  • 최종용;조해용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.633-637
    • /
    • 1995
  • Numerical calculation tool for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear, sequare spline, internal serrations. A complex calcuation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper, the workpiece with both external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool form combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with other and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

A Study on the Forging of Spur Gears with Internal Serrations (내부세레이션홈을 갖는 스퍼어 기어의 단조에 관한 연구)

  • 최종웅;조해용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.81-89
    • /
    • 1998
  • Numerical calculation tools for forging of gear-like components based on kinematically admissible velocity fields for upper bound method applicable to various deformation features of workpiece in forging processes were suggested. Each one of them deals with unidirectional flow of metal on dies, such as external involute spur gear. square spline, internal serrations. A complex calculation tool of gear-like component forging process was built up by combining these kinematically velocity fields. In this paper the workpiece with 110th external and internal teeth is divided into two parts. The deformation of each part is analyzed simultaneously using numerical calculation tool from combined kinematically admissible velocity field. The experimental set-up was installed in a 200 ton hydraulic press. As a result, each kinematically admissible velocity field could be combined with others and the calculated solution are useful to predict the capacity of forging equipment.

  • PDF

Simultaneous Measurement of Velocity and Concentration Field in a Stirred Mixer Using PIV/LIF Technique (PIV/LIF기법에 의한 교반혼합기 내의 속도장과 농도장 동시 측정)

  • Jeong, Eun-Ho;Yoon, Sang-Youl;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.504-510
    • /
    • 2003
  • Simultaneous measurements of turbulent velocity and concentration field in a stirred mixer tank are carried out by using PIV/LIF technique. Instantaneous velocity fields are measured with a 1K$\times$1K CCD camera adopting the frame straddle method while the concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. It is found that the general features of the mixing pattern are quite dependent on the local flow characteristics during the rapid decay of mean concentration. However, the small scale mixing seems to be independent on the local turbulent velocity fluctuation.

Simultaneous Measurement of Velocity and Concentration Field in a Stirred Mixer Using PIV/LIF Techniqueut and POD Analysis (PIV/LIF에 의한 교반혼합기 유동의 난류 속도/농도장 측정 및 POD해석)

  • Jeong Eun-Ho;Yoon Sang-Youl;Kim Kyung-Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.101-104
    • /
    • 2002
  • Simultaneous measurement of turbulent velocity and concentration field in a stirred mixer tank is carried out by using PIV/LIF technique. Instantaneous velocity fields are measured by a $1K\times1K$ CCD camera adopting the frame straddle method while the concentration fields are obtained by measuring the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. It is found that the general features of the mixing pattern are quite dependent on the local flow characteristics during the rapid decay of mean concentration. However, the small scale mixing seems to be independent on the local turbulent velocity fluctuation.

  • PDF

The Effect of Duct Inlet Condition on Flow Characteristics of Fan (덕트의 입구조건이 팬의 특성에 미치는 영향)

  • Kim, J.S.;Cho, K.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 1995
  • The effects of duct inlet conditions on fan characteristics and upper wind velocity fields were investigated for two kinds of impellers. As the duct inlet condition, the relative positions between duct inlet and fan impeller and the size of baffle plate mounted on a duct inlet were selected. The 3-dimensional velocity components in flow fields were measured by a 5-holes pitot tube. From the results of measurements, it was found that the size of baffle plate scarecely effect on upper wind flow fields and characteristics of fan. It was also confirmed that the upper wind velocity distributions can be estimated by the potential flow field with large baffle plate at duct inlet.

  • PDF

Prediction of Three Dimensional Turbulent flows around a MIRA Vehicle Model (MIRA Vehicle Model 주위의 3차원 난류유동 예측)

  • 명현국;진은주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.86-96
    • /
    • 1998
  • A numerical study has been carried out of three-dimensional turbulent flows around a MIRA reference vehicle model both with and without wheels in computation. Two convective difference schemes with two k-$\varepsilon$ turbulence models are evaluated for the performance such as drag coefficient, velocity and pressure fields. Pressure coefficients along the surfaces of the model are compared with experimental data. The drag coefficient, the velocity and pressure fields are found to change considerably with the adopted finite difference schemes. Drag forces computed in the various regions of the model indicate that design change decisions should not rely just on the total drag and that local flow structures are important. The results also indicate that the RNG model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient rather than the other cases.

  • PDF

A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roil Continuous Casting (쌍롤 연속 주조에서의 난류 유동, 온도 및 응고 예측을 위한 연구)

  • Ha, Man Yeong;Choi, Bong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.12-24
    • /
    • 1999
  • A computer program has been developed for analyzing the two-dimensional, unsteady conservation equations for transport phenomena in the molten region of twin-roll continuous casting in order to predict the turbulent velocity, temperature fields, and solidification process of the molten steel. The energy equation of the cooling roll is solved simultaneously with the conservation equations of molten steel in order to consider heat transfer through the cooling roll. The results show the velocity, temperature and solidification pattern in the molten region with roll temperature as a function of time. The results for velocity and temperature fields with solidification are compared with those without solidification, giving different thermofluid characteristics in the molten region. We also investigated the effects of revolutional speed of roll, superheat and nozzle geometry on the turbulent flow, temperature and solidification in the molten steel and temperature fields in the cooling roll.

A Study on the Turbulent Characteristics of Rushton Turbine Mixer by Simultaneous Measurement of Velocity and Concentration Field with Stereo-PIV/PLIF Technique (Stereo-PIV/PLIF의 속도장과 농도장 동시측정 기법을 이용한 러쉬톤 교반기내 난류특성에 관한 연구)

  • Min, Young-Uk;Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.694-699
    • /
    • 2003
  • Simultaneous measurement with PLIF(Planar Laser-Induced Fluorescence) and Stereo-PIV(Stereoscopic Particle Image Velocimetry) was performed to investigate the structural characteristics of flow field in Rushton Turbine Mixer. Instantaneous 3D velocity fields are measured by two 2K ${\times}$ 2K CCD cameras focused on an object plane with the angular displacement methods while the concentration fields are obtained through the measurement of the fluorescence intensity of Rhodamine B tracer excited by the second pulse of Nd:Yag laser light. Image distortion due to the camera view-angle is compensated by a mapping function. Finally, the spatial structures of turbulent mixing around Rushton turbine were identified by the calculation of cross-correlation fields between the velocity and concentration field.

  • PDF

Computation of Pressure Fields in the Lagrangian Vortex Method (Lagrangian 보오텍스 방법에서의 압력장 계산)

  • 이승재;김광수;서정천
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 2004
  • In the Lagrangian vortex particle method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations, a numerical scheme for calculating pressure fields is presented. Implementation of the numerical method is directly connected with the well-established surface panel methods, just by dealing with the dynamic coupling among vorticity field. Assuming the vorticity and the velocity fields are to be calculated in time domain analysis, the pressure calculation for a complete set of solution at present time step is performed in a similar way to the one used in the Eulerian description. For a validation of the present method, we illustrate the early development of the viscous flow about an impulsive started circular cylinder for Reynolds number 550. The comparative study with the Eulerian finite Volume method provides an extensive understanding and application of the mesh-free Lagrangian vortex methods for numerical simulation of viscous flows around arbitrary bodies of general shape.

Numerical Signal Prediction and Calibration Using the Theory of a Current-Type Electromagnetic Flowmeter for Two-Phase Slug Flow (슬러그 2상유동에서 전류형식 전자기유량계 수치적 신호예측 및 보정)

  • Ahn Yeh-Chan;Oh Byung Do;Kim Jong-Rok;Kim Moo Hwan;Kang Deok-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.671-686
    • /
    • 2005
  • The transient nature and complex geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et al.). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. The velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method, and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for simulating slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are proposed for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.