• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.029 seconds

Reconstruction of wind speed fields in mountainous areas using a full convolutional neural network

  • Ruifang Shen;Bo Li;Ke Li;Bowen Yan;Yuanzhao Zhang
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.231-244
    • /
    • 2024
  • As wind farms expand into low wind speed areas, an increasing number are being established in mountainous regions. To fully utilize wind energy resources, it is essential to understand the details of mountain flow fields. Reconstructing the wind speed field in complex terrain is crucial for planning, designing, operation of wind farms, which impacts the wind farm's profits throughout its life cycle. Currently, wind speed reconstruction is primarily achieved through physical and machine learning methods. However, physical methods often require significant computational costs. Therefore, we propose a Full Convolutional Neural Network (FCNN)-based reconstruction method for mountain wind velocity fields to evaluate wind resources more accurately and efficiently. This method establishes the mapping relation between terrain, wind angle, height, and corresponding velocity fields of three velocity components within a specific terrain range. Guided by this mapping relation, wind velocity fields of three components at different terrains, wind angles, and heights can be generated. The effectiveness of this method was demonstrated by reconstructing the wind speed field of complex terrain in Beijing.

3-D Velocity Fields Measurements of Propeller Wake Using a Stereoscopic PIV (Stereoscopic PIV기법을 이용한 프로펠러 후류의 3차원 속도장 측정)

  • Paik Bu-Geun;Lee Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.185-188
    • /
    • 2002
  • The objective of present paper is to apply a stereoscopic PIV(Particle Image Velocimetry) techiique for measuring the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. It is essential to measure 3-components velocity fields for the investigation of complicated near-wake behind the propeller. The out-of-plane velocity component was measured using the particle images captured by two CCD cameras in the angular displacement configuration.400 instantaneous velocity fields were measured for each of few different blade phases of $0^{\circ},\;18^{\circ},\;36^{\circ}\;and\;54^{\circ}$. They were ensemble averaged to investigate the spatial evolution of the propeller wake in the region ranged from the trailing edge to the region of one propeller diameter(D) downstream. The phase-averaged velocity fields show the viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were formed periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component has large values at the tip and trailing votices. With going downstream, the axial turbulence intensity and the strength of tip vortices were decreased due to the visous dissipation, turbulence diffusion and blade-to-blade interaction. The blade wake traveling at higher speed with respect to the tip vortex overtakes and interacts with tip vortices formed from the previous blade. Tip vortices are separated from the wake and show oscillating trajectory

  • PDF

Investigation of the Three-dimensional Turbulent Flow Fields in Cone Type Gas Burner for Furnace - On the Vector Fields and Mean Velocities - (난방기용 콘형 가스버너에서 3차원 난류 유동장 고찰 - 벡터장 및 평균속도에 대하여 -)

  • Kim, J.K.;Jeong, K.J.;Kim, S.W.;Kim, I.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.25-31
    • /
    • 2000
  • This paper represents the vector fields and three dimensional mean velocities in the X-Y plane of cone type swirl gas burner measured by using X-probe from the hot-wire anemometer system. This experiment is carried out at flowrate 350 and $450{\ell}/min$ respectively in the test section of subsonic wind tunnel. The vector plot shows that the maximum axial mean velocity component is focused in the narrow slits distributed radially on the edge of a cone type swirl burner, for that reason, there is some entrainment of ambient air in the outer region of the burner and the rotational flow can be shown in the inner region of the burner because mean velocity W is distributed about twice as large as mean velocity V due to inclined flow velocity ejecting from the swirl vanes of a cone type baffle plate of burner. Moreover, the mean velocities are largely distributed near the outer region of burner within $X/R{\fallingdotseq}1.5$, hence, the turbulent characteristics are anticipated to be distributed largely in the center of this region due to the large inclination of mean velocity and swirl effect.

  • PDF

Effect of Electric Fields on Reattachment of Lifted Flame at Low AC Frequency (저주파 교류 전기장 내에서의 부상화염의 재부착 특성에 관한 연구)

  • Kim, Y. K.;Ryu, S. K.;Won, S. H.;Chung, S. H.
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.197-201
    • /
    • 2007
  • The reattachment characteristics of propane lifted flames in laminar coflow jets influenced by AC electric fields have been investigated experimentally in low AC frequency range. The reattachment velocity and height have been measured by varying the applied AC voltage and frequency. The results showed that the reattachment of lifted flame occurred at relatively higher jet velocity with AC electric fields, comparing to that without having AC electric fields. The effect of AC electric fields became more effective at higher voltage and lower frequency in the AC frequency range larger than 30 Hz. However, in the low frequency range below 30 Hz, the reattachment velocity decreased with decreasing frequency. Consequently, there existed a transition regime, for the frequency smaller than about 30 Hz. Also, when the AC voltage was applied to the fuel nozzle at very low frequency, the reattachment process exhibited an oscillatory behavior, synchronized with the applied AC frequency.

  • PDF

Effect of Applied Magnetic Fields on Czochralski Single Crystal Growth (Czochralski 단결정 성장특성제어를 위한 자장형태에 관한 연구)

  • 김창녕;김경훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.18-30
    • /
    • 1993
  • A numerical analysis has been carried out on the Czochralski flow fields when uniform and nonuniform magnetic fields are applied. Czochralski flow fields are governed by buoyancy forces, thermocapillarity, centrifugal forces, and applied magneic fields. In this analysis, pressure and three components of velocity vectors are obtained, and circumferential electrical currents are calculated. When a uniform magnetic field is applied, all the velocity components are decreased and the circumferential electric currents near the crystal surface are increased as the magnetic field intensity is increased. In the case of a nonuniform field, the flows in a meridional plane are suppressed and the circumferential velocity is increased as the non uniformity is increased. The understanding on the Czochralski flow fields under the influence of magnetic fields can lead to the study on the behavior of the concentration of the solute and impurities.

  • PDF

A Study on the baffle effect in a stirred mixer using simultaneous measurement of velocity/concentration fields (속도/농도 동시측정에 의한 회전교반기 내부 유동의 baffle 효과에 관한 연구)

  • Kim Yun Gi;Min Young Uk;Kim Kyung Chun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.35-38
    • /
    • 2003
  • Simultaneous measurement of velocity and concentration fields in a stirred mixer flow using a combined Stereo-PIV/Planar-LIF technique is carried out. Instantaneous velocity fields and concentration fields represent the local flow characteristics. A baffle is perpendicularly attached to the Wall to remove inactive region which shows very slow dispersion. It is found that the baffle produces tip vortex and breaking the divided streamline, so that mixing efficiency could be increases significantly.

  • PDF

Superdiffusion and Randomness in Advection Flow Fields (이류 유동장의 초확산과 무작위성)

  • Kim, In Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1163-1171
    • /
    • 1999
  • Superdiffusive transport motions of passive scalars are numerically considered for various advection velocity fields. Calculated exponents ${\alpha}$ in the superdiffusion-defining relation ${\sigma}^2(t){\sim}t^{\alpha}$ for model flow fields agree to the theoretically predicted values. Simulation results show that the superdiffusion takes place as the tracers' motion become less random, compared to their motion at the pure molecular diffusion. Whether the flow field is random or not, degrees of superdiffusion are directly related to the velocity autocorrelation functions along the tracers Lagrangian trajectories that characterize degrees of randomness of the tracers' motion.

Development of a Dynamic PIV System for Turbulent Flow Analysis (난류유동 해석을 위한 Dynamic PIV 시스템의 개발)

  • Lee Sang-Joon;Jang Young-Gil;Kim Seok
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields are essential for physical understanding of a complicated turbulent flow. Due to advances of high-speed imaging technique, laser and electronics, high-speed digital cameras and high-repetition pulse lasers are commercially available in nowadays. A dynamic PIV system that can measure consecutive instantaneous velocity field with 1K$\times$ 1K pixels resolution at 1 fps was developed. It consists of a high-speed CMOS camera and a high-repetition Nd:YLF pulse laser. Theoretically, it can capture velocity fields at 20 fps with a reduced spatial resolution. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet of which Reynolds number is about 3000. The particle images of 1024$\times$512 pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

Wind velocity simulation of spatial three-dimensional fields based on autoregressive model

  • Gao, Wei-Cheng;Yu, Yan-Lei
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.241-256
    • /
    • 2008
  • This paper adopts autoregressive (AR) model to simulate the wind velocity of spatial three-dimensional fields in accordance with the time and space dependent characteristics of the 3-D fields. Based on the built MATLAB programming, this paper discusses in detail the issues of the AR model deduced by matrix form in the simulation and proposes the corresponding solving methods: the over-relaxation iteration to solve the large sparse matrix equations produced by large number of degrees of freedom of structures; the improved Gauss formula to calculate the numerical integral equations which integral functions contain oscillating functions; the mixed congruence and central limit theorem of Lindberg-Levy to generate random numbers. This paper also develops a method of ascertaining the rank of the AR model. The numerical examples show that all those methods are stable and reliable, which can be used to simulate the wind velocity of all large span structures in civil engineering.

A Study on the Optimum Velocity Fields in Plane-strain and Axisymmetric Forging (평면변형 및 축대칭 단조에서 최적 속도장에 관한연구)

  • 김진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.379-388
    • /
    • 1999
  • Au upper bound elemental technique(UBET) program has been developed to analyze forging load die-cavity filling and optimum kinematically admissible velocity fields for flashless forging. The simulation for flashless forgings are applied plane-strain and axisymmetric closed-die forging with rib-web type cavity. The kinematically admissible velocity fields for inverse triangular and inverse trapezoidal elements are used to analyze flashless forging,. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load in plane-strain and axisymmetric forging are in good agreement with experimental results.

  • PDF