• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.033 seconds

Simultaneous measurement of velocity and temperature fields in micro-scale flow and its application to electrokinetic flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2585-2590
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIF) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIF are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

  • PDF

Simultaneous Measurement of Velocity and Temperature Fields in Micro-Scale Flow and Its Application to Electrokinetic Flow (마이크로 스케일 유동에서의 속도장 온도장 동시 측정 기법과 동전기 유동에의 적용)

  • Lee, Beom-Joon;Jin, Song-Wan;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.644-652
    • /
    • 2007
  • In this paper, a technique of simultaneously measuring the velocity and the temperature in micro-scale flow is proposed. This method uses particle tracking velocimetry (PTV) for measuring the velocity and laser induced fluorescence (LIE) for measuring the temperature. To measure the accurate velocity and temperature, images for PTV and for LIE are separated by using two light sources and a shutter which is synchronized with a camera. By using only one camera, measurement system can be simplified and the error from complicate optical system can be minimized. Error analyses regarding the concentrations of fluorescent dye and particle and the light source fluctuation are also conducted. It is found that the error of the temperature and the velocity highly depends on the concentration of fluorescent particles which are used for PTV. This technique is applied to the simultaneous measurement of the velocity and the temperature in the electrokinetic flow. It is found that the velocity and temperature vary with the electric field strength and the concentration of electrolyte.

Dynamic PIV analysis of High-Speed Flow from Vent Holes of Fill-Hose in Curtain type Airbag (Dynamic PIV 기법을 이용한 커튼에어백 Vent Hole 고속유동 해석)

  • Jang, Young-Gil;Choi, Yong-Seok;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.17-20
    • /
    • 2006
  • Passenger safety is fundamental factor in automobile. Among much equipment for passenger safety, the air bag system is the most fundamental and effective device. Beside of the front air bag system which installed on most of all automobiles, a curtain-type air bag is increasingly adapted in deluxe cars fur protecting passengers from the danger of side clash. Curtain type airbag system consists of inflator housing, fill hose, curtain airbag. Inflator housing is a main part of the curtain-type air bag system for supplying high-pressure gases to deploy the air bag-curtain. Fill hose is a passageway to carry the gases from inflator housing to each part of curtain airbag. Therefore, it is very important to design the vent holes of fill hose for good performance of airbag deployment. But, the flow information from vent holes of fill hose is very limited. In this study, we measured instantaneous velocity fields of a high-speed flow ejecting from the vent holes of fill hose using a dynamic PIV system. From the velocity Held data measured at a high frame-rate, we evaluated the variation of the mass flow rate with time. From the instantaneous velocity fields of flow ejecting from the vent holes in the initial stage, we can see a flow pattern of wavy motion and fluctuation. The flow ejecting from the vent holes was found to have very high velocity fluctuations and the maximum velocity was about 480m/s at 4-vent hole region. From the mass flow rate with time, the accumulated flow of 4-vent hole has occupied about 70% of total flow rate.

  • PDF

Development of Three-dimensional Baroclinic Hydrodynamic Model and flow Patterns of the Suyoung Bay (3차원 경합 海水流動 모델의 開發과 水營蠻의 폐수유동)

  • 김차겸;이종섭
    • 한국해양학회지
    • /
    • v.28 no.2
    • /
    • pp.86-100
    • /
    • 1993
  • Three-dimensional baroclinic hydrodynamic model, BACHOM-3, is developed using ADI finite difference scheme. The model is applied to a uni-nodal standing wave in a rectagular basin. The model results for the surface elevation and velocities coincide with the analytical results. To verify the field applicability of the model and to investigate the flow patterns of the Suyoung Bay in Pusan, Korea, the model is applied to the bay. The numerically predicted velocity predicted velocity fields during spring tide at normal river flow are compared with field measurements, the comparisons show good agreement. A clockwise residual circulations at the first level (depth = 0∼2m) and the second level (depth=2∼5 m) of the central part of the bay occur, and the ebb flow is stronger than the flood flow. Computed velocity fields show that the phase difference of velocities between the surface layer and bottom layer occurs and the phase lag increases with height from the bottom. Then, the model is applied successfully for the computation of flow fields considering flood river flow and wind effects. When the wind is blowing toward the land from the sea, the flow patterns at the surface layer correspond with the wind direction, but the flow patterns at the near solid boundary of the lower layer show opposite currents to the wind direction.

  • PDF

Numerical Investigations of Turbulent Piloted Non-Premixed Flames (난류 Pilot 비예혼합 화염장의 상세구조 해석)

  • Lee, Jeonwon;Jeon, Sangtae;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.185-186
    • /
    • 2014
  • The multi-environment probability density function model has been applied to simulate the turbulent stratified premixed flames. The direct quadrature method of moments (DQMOM) has been adopted to solve the transport PDF equation due to its computational efficiency and robustness. The IEM mixing model is employed to represent the mixing process and the chemical mechanism is based on Gri 3.0 mechanism. Numerical results obtained in this study are precisely compared with experimental data in terms of unconditional and conditional means for scalar fields and velocity fields.

  • PDF

HI LINEWIDTHS, ROTATION VELOCITIES AND THE TULLY-FISHER RELATION

  • Rhee, Myung-Hyun;Broeils, Adrick H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.89-112
    • /
    • 2005
  • We determine the rotation velocities of 108 spiral and irregular galaxies (XV-Sample) from first-order rotation curves from position-velocity maps, based on short 21-cm observations with the Westerbork Synthesis Radio Telescope (WSRT). To test the usual random motion corrections, we compare the global HI linewidths and the rotation velocities, obtained from kinematical fits to two-dimensional velocity fields for a sample of 28 galaxies (RC-Sample), and find that the most frequently used correction formulae (Tully & Fouque 1985) are not very satisfactory. The rotation velocity parameter (the random-motion corrected HI linewidth: W?), derived with these corrections, may be statistically equal to two times the true rotation velocity, but in individual cases the differences can be large. We analyse, for both RC- and XV-Samples, the dependence of the slope of, and scatter in the Tully-Fisher relation on the definition of the rotation velocity parameters- For the RC-Sample, we find that the scatter in the Tully-Fisher relation can be reduced considerably when the rotation velocities derived from rotation curves are used instead of the random-motion corrected global H I linewidths. No such reduction in the scatter is seen for XV-Sample. We conclude that the reduction of the scatter in the Tully-Fisher relation seems to be related to the use of two-dimensional velocity information: accurate rotation velocity and kinematical inclination.

Velocity Field Measurement of Impinging Waves on a Structure (구조물에 작용하는 쇄파의 속도장 측정)

  • Choi, Sang-Hyun;Ryu, Yong-Uk
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.559-565
    • /
    • 2005
  • As the wave impinges on and overtops the structure, a large highly aerated region is created in front of the structure and water splashs on top of the structure. The broken wave in front of the structure and associated green water on top of the structure are highly aerated containing not only a large number of bubbles but also very large sizes of bubbles. In this paper, the velocity field of the highly aerated region and the splashing water on the top is measured using a modified PIV method incorporating the traditional PIV method with the shadowgraphy technigue by correlating the ' texture ' of the bubble images. The velocity fields of a plunging wave impacting on a structure in a two-dimensional wave flume is measured. It is found that the maximum fluid particle velocity in flout of the structure during the impinging process is about 1.5 times the phase speed of the wave, while the maximum horizontal velocity above the top is less than the phase speed, It is also found that the dam breaking solution does not work well in predicting the green water velocity.

Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.93-105
    • /
    • 2002
  • Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.

Analysis of the radiation characteristics from a slot antenna in a plane conductor covered with a moving isotropic plasma layer (운동중인 등방성 플라즈마 층으로 덮인 평면도체 슬랏 안테나의 복사특성 해석)

  • 김남태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.44-51
    • /
    • 1996
  • The radiation characteristics of a slot antenna in a plane conductor covered with a miving isotropic plasma layer are analyzed. The radiation null which causes distortion in radiation pattern is explainted by the zero of integrand in an asymptotic integral for radiation fields as a function of the plasma parameter and the plasma velocity. Numerical resutls for a radiation null calculated from various plasma and velocity parameters correspond to the results of two-dimensional problem.

  • PDF

INTERACTION OF HIGH VELOCITY CLOUDS WITH MAGNETIZED DISKS: THREE-DIMENSIONAL NUMERICAL SIMULATIONS

  • SANTILLAN ALFREDO;FRANCO JOSE;KIM JONGSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.233-235
    • /
    • 2004
  • High-velocity clouds are flows of neutral hydrogen, located at high galactic latitudes, with large velocities ($[VLSR]{\ge} 100 km/s$) that do not match a simple model of circular rotation for our Galaxy. Numerical simulations have been performed for the last 20 years to study the details of their evolution, and their possible interaction with the Galactic disk. Here we present a brief review of the models that have been already published, and describe newly performed three-dimensional magnetohydrodynamic simulations.