• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.031 seconds

Micro-PIV Measurements of In Vitro Blood Flow in a Micro-Channel

  • Park, Cheol-Woo;Lee, Sang-Joon;Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.30-35
    • /
    • 2003
  • Flow characteristics of blood flow in a micro channel were investigated experimentally using a micro-PIV (Particle Image Velocimetry) velocity field measurement technique. The main objective of this study was to understand the real blood flow in micron-sized blood vessels. The Reynolds number based on the hydraulic diameter of micro-channel for deionized (DI) water was about Re=0.34. For each experimental condition, 100 instantaneous velocity fields were captured and ensemble-averaged to get the spatial distributions of mean velocity. In addition, the motion of RBC (Red Blood Cell) was visualized with a high-speed CCD camera. The captured flow images of nano-scale fluorescent tracer particles in DI water were clear and gave good velocity tracking-ability. However, there were substantial velocity variations in the central region of real blood flow in a micro-channel due to the presence of red blood cells.

  • PDF

A Study on the Flow Velocity of Micro Channels Depending on Surface Roughness (표면 거칠기에 따른 마이크로 채널의 유속에 관한 연구)

  • Park, Hyun-Ki;Kim, Jong-Min;Hong, Min-Sung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • Micro machining can manufacture complex shapes with high accuracy. Especially, this enables wide application of micro technology in various fields. For example, micro channels allow fluid transfer, which is a widely used technology. Therefore, liquidity research of flow in micro channels and micro channel manufacturing with use of various materials and cutting conditions has very important meaning. In this study, to find out correlation between fluid velocity in micro channels and surface roughness, we manufactured micro channels using micro end-mill and dropped ethanol into micro channels. We compared several surface roughness and fluid velocity in micro channels that were created by various processing conditions. Finally, we found out relationship between fluid velocity and surface roughness in micro channels of different materials.

On the Study of the Mass Transport near the Entrance of Inclined Breakwaters due to Viscosity (점성 효과에 의한 경사진 방파제 입구에서의 토사 이동에 관한 연구)

  • Cho, I. H.;Gong, D. S.
    • Journal of Korean Port Research
    • /
    • v.6 no.2
    • /
    • pp.25-31
    • /
    • 1992
  • Herein we investigate the mass transport velocity caused by the viscosity near the ocean structure such as circular pile and inclined breakwaters. The mass transport velocity which is represented by the sum of the Eulerian velocity and the stokes drift were derived by Carter, Liu and Mei(1973). The tangential components of the inviscid velocity field at the bottom needed in the calculation of the mass transport velocity is obtained by solving the scattering problem due to breakwaters. The matched asymptotic expansion technique is employed to obtain the inviscid flow fields scattered by inclined breakwaters. The numerical results show that heary sediments tends to be deposited near the center of breakwaters and that the narrowing of the entrance width results in reduction of the magnitude of mass transport.

  • PDF

Measurement of Fluid Dynamic Characteristics around Stenotic Obstruction in a Circular Channel

  • An, Jin-Hyo;Cheema, T.A.;Jeong, Seong-Ryong;Lee, Choon-Young;Kim, Gyu-Man;Park, Cheol-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.921-929
    • /
    • 2011
  • We measured experimentally the properties of fluid dynamics, velocity fields, and the pressure, around stenotic obstruction located inside a circular channel structure. Particle image velocimetry system was employed to obtain velocity fields at the central section of the circular channel in the streamwise direction. The stenosis model used was made of acrylic material with different stenotic aspect ratios. The working fluid was water and it was returned by a centrifugal pump system. Pressure measurements were carried out to validate the effect of a narrow passageway. Results showed that the acceleration of gap flow through stenotic obstruction and the pressure drop in the recirculation regime behind the stenosis model can be observed.

Numerical Study of Taylor-Couette Flow with an Axial Flow (축방향 유동이 있는 Taylor-Couette 유동에 대한 전산 해석)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.444-449
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating and with an imposed pressure-driven axial flow, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[Phys. Fluid, 11 (12), 1999]. They carried out experiments using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When an axial flow is imposed, the critical Taylor number is increased. The axial flow stabilizes the flow field and decreases the torque required to rotate the inner cylinder. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

  • PDF

The Flow Characteristics in a Vaneless Diffuser by PIV Measurements (PIV측정에 의한 깃 없는 디퓨저에서의 유동특성)

  • Yoon, Ji-In;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.45-50
    • /
    • 2012
  • The flow characteristics in a vaneless diffuser with a backswept radial impeller have been experimentally investigated according to the variation of discharge flow rate. Particle image velocimetry(PIV) system was applied to measure velocity fields with several operating conditions and on some diffuser horizontal planes. Pressure transducers were installed on hub wall of the diffuser in order to analyze the pressure fluctuations and their corresponding velocity fields. The results show that the location of the main flow center moves from the hub to the shroud side as the flow rate decreases, and the reverse flow is locally generated on the hub side.

The Effects of the Intake Value Type on the Intake Flow(I) -The Axial Velocity Distribution by the Model- (흡입밸브 형상이 흡입유동에 미치는 영향(I) -모델에 의한 축방향속도분포-)

  • 하대진;박경석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.57-67
    • /
    • 1989
  • This paper deals with the experimental study of the turbulent flow fields by the hot-wire anemometer and the density fields by the Schlieren photography. In this study, the air mixed with CO$_{2}$ was used to visualize and to study this process and experimental parameters used were valve lift and valve shape. The results obtained are as follows: 1) The axial velocity of mixture flow passing a valve is changed greatly by valve seat angle and valve lift. Especially, it is changed more when the valve seat angles is 30.deg. and 45.deg. than when these are 60.deg. and 90.deg. 2) Experimental results by hot wire anemometer and Schlieren apparatus are very close together. The most satisfactory results are shown when the valve seat angle is 45.deg.

  • PDF

Measurement of turbulent jet flow using dynamic PIV technique (Dynamic PIV를 이용한 난류 제트유동 해석)

  • Lee Sang-Joon;Jang Young-Gil;Kim Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.36-39
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields is essential for physical understanding of a complicated turbulent flow and was obtainable using dynamic PIV because of advances of high-speed imaging technique, laser and electronics. A dynamic PIV systme consists of a high-speed CMOS camera having $1K\times1K$ pixels resolution at 1 KHz and a high-repetition Nd:Yag pulse laser. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet whose Reynolds number is about 3000. The particle images of $1024\times512$ pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

Radition characteristics of a slot antenna in a conducting cylinder convered with a moving isotropic plasma layer (운동중인 등방성 플라즈마 층으로 덮인 도체 실린더 슬랏 안테나의 복사특성)

  • 김남태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.2
    • /
    • pp.298-305
    • /
    • 1997
  • In this paper, the radiation characteristics of a slot annenna in conduction cylinder covered with a moving isotropic plasma layer are analyzed. Integral representations of the eletromagnetic fields in the spectral domain radiated through the plasma layer are derived and converted into the fields in the spacial domain by saddle-point ingegration. Radiation null which brings about distorion in the radiation parrern is explained by the zero of integrand in an asymptotic integral as a function of plasma and velocity parameters. Numerical results for a radiation null calculated from various plasma and velocity parameters correspond to the results of planner structure.

  • PDF

Measurement of Flow Field through a Staggered Tube Bundle using Particle Image Velocimetry (PIV기법에 의한 엇갈린 관군 배열 내부의 유동장 측정)

  • 김경천;최득관;박재동
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.595-601
    • /
    • 2001
  • We applied PIV method to obtain instantaneous and ensemble averaged velocity fields from the first row to the fifth row of a staggered tube bundle. The Reynolds number based on the tube diameter and the maximum velocity was set to be 4,000. Remarkably different natures are observed in the developing bundle flow. Such differences are depicted in the mean recirculating bubble length and the vorticity distributions. The jet-like flow seems to be a dominant feature after the second row and usually skew. However, the ensemble averaged fields show symmetric profiles and the flow characteristics between the third and fourth measuring planes are not so different. comparison between the PIV data and the RANS simulation yields severe disagreement in spite of the same Reynolds number. It can be explained that the distinct jet-like unsteady motions are not to be accounted in th steady numerical analysis.

  • PDF