• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.03 seconds

Study of the Kinetic Effects on Relativistic Unmagnetized Shocks using 3D PIC Simulations

  • Choi, Eun Jin;Min, Kyoung W.;Choi, Cheongrim;Nishikawa, Ken-Ichi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.101.2-101.2
    • /
    • 2012
  • Shocks are ubiquitous in astrophysical plasmas: bow shocks are formed by the interaction of solar wind with planetary magnetic fields, and supernova explosions and jets produce shocks in interstellar and intergalactic spaces. The global morphologies of these shocks are usually described by a set of magnetohydrodynamic (MHD) equations which tacitly assumes local thermal equilibrium, and the resulting Rankine-Hugoniot shock jump conditions are applied to obtain the relationship between the upstream and downstream physical quantities. While thermal equilibrium can be achieved easily in collisional fluids, it is generally believed that collisions are infrequent in astrophysical settings. In fact, shock widths are much smaller than collisional mean free paths and a variety of kinetic phenomena are seen at the shock fronts according to in situ observations of planetary shocks. Hence, both the MHD and kinetic equations have been adopted in theoretical and numerical studies to describe different aspects of the physical phenomena associated with astrophysical shocks. In this paper, we present the results of 3D relativistic particle-in-cell (PIC) simulations for ion-electron plasmas, with focus on the shock structures: when a jet propagates into an unmagnetized ambient plasma, a shock forms in the nonlinear stage of the Weibel instability. As the shock shows the structures that resemble those predicted in MHD systems, we compare the results with those predicted in the MHD shocks. We also discuss the thermalization processes of the upstream flows based on the time evolutions of the phase space and the velocity distribution, as well as the wave spectra analyses.

  • PDF

A Rate-Dependent Elastic Plastic Constitutive Equation in Finite Deformation Based on a Slip Model (슬립모델을 이용한 변형률의존 유한변형 탄소성재료의 구성방정식 개발)

  • Nam, Yong-Yun;Kim, Sa-Soo;Lee, Sang-Gab
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.77-86
    • /
    • 1997
  • The advanced development in many fields of engineering and science has caused much interests and demands for crashworthiness and non-linear dynamic transient analysis of structure response. Crash and impact problems have a dominant characteristic of large deformation with material plasticity for short time scales. The structural material shows strain rate-dependent behaviors in those cases. Conventional rate-independent constitutive equations used in the general purposed finite analysis programs are inadequate for dynamic finite strain problems. In this paper, a rate-dependent constitutive equation for elastic-plastic material is developed. The plastic stretch rate is modeled based on slip model with dislocation velocity and its density so that there is neither yielding condition, nor loading conditions. Non-linear hardening rule is also introduced for finite strain. Material constants of present constitutive equation are determined by experimental data of mild steel, and the constitutive equation is applied to uniaxile tension loading.

  • PDF

The Change of Flow Characteristics in Lateral Aneurysm Models for Different Coil Locations (코일 위치에 따른 측방 동맥류 내부 혈류 유동의 변화)

  • 이계한;송계웅;변홍식
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.5
    • /
    • pp.375-383
    • /
    • 2002
  • Aneurysm embolisation method using coils have been widely used. Micro coils are introduced via a small catheter, and are packed inside of aneurysm sac, which induces intraaneurysmal flow stagnation and thrombus formation. When partial blocking of an aneurysm is inevitable, the location of coils is important since it changes the flow patterns inside the aneurysm, which affect the embolisation process. We measured the flow field inside the partially blocked lateral aneurysm models in vitro, and tried to suggest the effective locations of coils for aneurysm embolisation. Velocity fields are measured using a particle image velocitimeter for different coil locations- proximal neck, distal neck, proximal dome and distal dome. Flow into the aneurysm sac was significantly reduced in the distally blocked models, and coils at distal neck blocked inflow more effectively comparing to those at distal dome. This study suggests that distal neck should be the most effective location for aneurysm embolisation.

On the Flow Characteristics around a Circular Cylinder according as the Water Depth from the Free Surface (자유수면에 인접한 원형실린더형 몰수체 주위의 유동특성에 관한 연구)

  • Gim, Ok-Sok;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.331-336
    • /
    • 2010
  • The free surface influenced the wake behind a circular cylinder and its effects were investigated experimentally in a circulating water channel with the variation of water depth. Instantaneous velocity fields were measured in this paper. The measured results has been compared with each other to investigate the flow characteristics of the circular cylinder's 2-dimensional section at $Re=1.0{\times}10^3$ using 2-frame grey level cross correlation PIV method. The flow around the circular cylinder with free surface affected the wake structure. Especially, in case of d=1.0D, the boundary layer was measured in the whole area. The separation point and boundary layer of the circular cylinder could be controlled by the water depth.

Development of the Connection Unit with a Gas Gun Installed in a Quadcopter-type Drone (쿼드콥터형 드론에 설치된 가스총 결합유닛의 개발)

  • Jeon, Junha;Kang, Ki-Jun;Kwon, Hyun-Jin;Chang, Se-Myong;Jeong, Jae-Bok;Baek, Jae-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.774-781
    • /
    • 2018
  • In this investigation, a gas gun is proposed driven by carbon dioxide gas and installed on a quadcopter-type small unmanned drone for the purpose of cattle vaccination, and we developed a launcher and its connection unit. The system consists of a commercial drone, a gas gun, a solenoid valve, and the remote communication controller, etc. The velocity of launched projectile is measured, and the full system is finally validated through ground test and flight examination loaded for the real aircraft. The feasibility is checked if this technology is applicable to various disease abatement and hazard mitigation in the fields of agriculture and fire-fighting with the present research and development.

Chaotic Vibrations of a Cantilevered Beam with Stops to Limit Motions (차단판에 의해 운동이 제한된 외팔보의 혼돈 진동)

  • Choi, Bong-Moon;Ryu, Bong-Jo;Kim, Young-shik;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1852-1865
    • /
    • 2017
  • The vibration of the structures with restrained motion has long been observed in various engineering fields. When the motion of vibrating structure is restrained due to the adjacent objects, the frequencies and the mode shapes of the structure change and its vibration characteristics becomes unpredictable, in general. Although the importance of the study on this type of vibration model increases in many engineering areas, most studies conducted so far are limited to the theoretical study on dynamic responses of the structure with stops, including some experimental works. Specially, the study on the nonlinear phenomena due to the impact between the structure and the stops have been mainly performed theoretically. In the paper, both numerical analyses and experiments are conducted to study the chaotic vibration characteristics of the nonlinear motion and the dynamic response of a cantilevered beam which has restrained motion at the free end by the stops. Results are presented for various magnetic forces and gaps between the beam and stops. The conclusions are as follows : Firstly, Numerical simulation results have a good agreement with experimental ones. Secondly, the effect of higher modes of beams are increased with increasing magnitude of exciting force, and displacement and velocity curves become more complicated shapes. Thirdly, nonlinear characteristics tend to appear greatly with increasing magnitude of exciting force, and fractal dimension is increased.

Design of Vehicle Safety Protocol on Visible Light Communication using LED (LED 가시광 통신을 이용한 자동차 안전 프로토콜 설계)

  • Kim, Ho-Jin;Kong, In-Yeup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.563-565
    • /
    • 2010
  • LED is low power and pro-environment semiconductor element. That can be used not only as the lighting function but also for Visible Light Communication(VLC). The VLC is the communication technology that can send data by blinking a fluorescent or LED using visible spectrum. That velocity of blinking can not be usually recognized by eyesight. Visible Light Communication using LED can be used in many fields. In the field of ITS(Intelligent Transportation System), Under construction on the road, Emitting traffic signs can be applied to transfer the vehicle information. In this paper, Emitting traffic signs in addition to the VLC give information about road condition, safety distance and the lane change. We design Communication protocol to provide safety service and verify protocol by experiment.

  • PDF

Three-Dimensional Numerical Model Experiments of Tidal and Wind-Driven Currents in Chinhae Bay (진해만 조류 및 취송류의 3차원 수치모형실험)

  • KIM, CHA-KYUM
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.95-106
    • /
    • 1994
  • Tidal and wind-driven currents in Chinhae Bay are investigated using a three-dimensional numerical model developed by Kim et al. (1993). The simulations indicate that the flow patterns in the bay are predominated by the bathymetry, wind and river inflow, and the effects of wind on the flow pattern in the inner bay are much stronger than those in the entrance channel. Computed tidal currents coincide with the field measurements. The horizontal and vertical velocities of tidal and residual currents are strong in the entrance channel of the bay, whereas the velocities are relatively weak in the western and northern parts of the bay. Computed velocity fields show the expected phase difference between the velocities in the surface and those in the bottom layer, and these characteristics are more remarkable during the spring tide than the neap tide. The surface currents in the bay depend strongly on the wind and river inflow, and such phenomena are more remarkable during the neap tide than the spring tide.

  • PDF

Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling (육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구)

  • Hwang, Jong-Duck;Ku, Hak-Keun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

Velocity Fields in the vicinity of Step Weir (계단형 보 주변 유속장 분석)

  • Ryu, Yong Uk;Kang, Joon Gu;Yeo, Hong Koo;Lee, Nam Joo;Kim, Ji Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.454-454
    • /
    • 2016
  • 하천의 치수안정성 확보 및 수심유지, 생태복원 등과 같은 다양한 요구를 충족하기 위한 보의 성능 개선에 대한 연구가 필요하며, 계단형 보는 재료에 의한 폭기효과 및 서식처 효과 등의 환경적요소를 내포하고 있다. 기존 연구는 표면류 흐름특성을 검증하고 유량변화에 따른 하류단 도수발생위치 변화를 분석하는 등 계단형 보에 대해 수리특성을 정량화한 연구가 대부분이며 흐름변화에 따른 유속장에 관한 연구는 미흡한 실정이다. 따라서 본 연구는 기능성 친환경 횡단 구조물 유형 중 하나인 계단형 보의 안정성 검토를 위한 수리적 특성을 분석하고자 함으로써 구조물 안정성에 영향을 줄 수 있는 자체 및 하류 보호공 주변의 유속 분석을 통한 흐름 특성을 검토하고 설계시 외력 고려를 위한 자료를 제공하기 위한 목적이 있다. 이를 위해 계단형 보모형에 대해 수리모형실험을 수행하였다. 폭 0.24 m, 총 길이 3.70 m, 높이 0.30 m인 순환실험수로를 이용하였으며, 계단형 보 모형은 5단으로 단 높이 2 cm와 단 길이 5 cm이며, 보 높이는 10 cm, 보 길이는 25 cm 모형으로 실험하였다. 하류에 전도식 게이트를 설치하여 하류 수위를 증가시키면서 보 하류부에서 발생하는 완전도수부터 하류수심이 보 높이를 초과하는 잠김흐름 조건에 대해 실험하였다. 측정기법은 입자영상측정계(Particle Image Velocimetry; PIV)를 이용하였으며, 상류영역부터 하류영역에 대해 보 주변 흐름의 순간적 유속분포를 확인하였다. 또한 측정된 전반적 흐름 양상에 대해 통계적 수리분석을 수행하였다. 흐름특성에 대한 연구는 향후 계단형 보의 물받이 길이 및 보의 적정 규모 설계시 중요한 자료가 될 것으로 기대한다.

  • PDF