• Title/Summary/Keyword: velocity feedback

Search Result 387, Processing Time 0.027 seconds

The determination of state feedback gains of XPTOS for disk drive servomechanism based on BESSEL filter prototype (XPTOS에 의한 디스크 드라이브 서보메커니즘의 구성시 BESSEL 필터 표준 함수에 근거한 상태피드백이득 결정)

  • Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.980-983
    • /
    • 1996
  • This paper presents the method of determining state feedback gains of XPTOS for disk drive servomechanism based BESSEL filter prototype. A typical disk drive actuator can be modeled as second order dynamics for low frequencies. However, the response at higher frequencies shows resonant behavior which cannot be easily modeled. XPTOS consists of the nonlinear control region and the linear control region. In the linear control region, the poles of a second order nominal model of plant must be properly relocated by pole placement technique to attenuate resonant modes at high frequency and to attain minimum time state transition. It is difficult to select position to satisfy this object because velocity feedback gain is subjected to position feedback gain in XPTOS. Here poles of BESSEL filter prototype are selected to determine state feedback gains of XPTOS. Simulation results for disk drive servomechanism using XPTOS having state feedback gains by the proposed method are presented.

  • PDF

Comparison of Effects on Static Balance in Stroke Patients According to Visual Biofeedback Methods

  • Kyu-Seong Choi;Il-Ho Kwon;Won-Seob Shin
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.320-326
    • /
    • 2023
  • Objective: The purpose of this study is to investigate the impact of visual biofeedback methods utilizing pressure sensors on the static balance of stroke patients. Design: Randomized crossover study. Methods: A total of 27 patients with hemiparesis participated in this study. The following three feedback conditions were considered: condition 1 (Knowledge of performance feedback), condition 2 (Knowledge of result feedback), and condition 3 (None feedback). A force plate was used to measure static balance. The total sway length, average sway velocity, x-axis excursion, and y-axis excursion of the center of pressure were measured. One-way repeated-measures analysis of variance was employed for comparisons of variables between each condition. The statistical significance level was set at α = 0.05 for all analyses. Results: There was a significant difference in the static balance results between each feedback condition (p<0.05). In the post-hoc results, it was confirmed that the static balance was significant in the order of knowledge of performance feedback, knowledge of result feedback, and none feedback. Conclusions: When comparing the three conditions, it was observed that knowledge of performance feedback showed the most improved effect on static balance ability. As further research progresses, that this approach could be used as an effective intervention method in clinical settings.

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.442-448
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback (DVFB) control strategy is not clearly defined so far. It is well known that direct velocity feedback (DVFB) control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated pairs of piezoelectric actuators (20, 50 and 100 mm) and accelerometers installed on three identical clamped-clamped beams (300 * 20 * 1 mm). The response of each sensor-actuator pair requires strictly positive real (SPR) property to apply a high feedback gain. However the length of the piezoactuator affects SPR property of the sensor-actuator response. Intensive simulation and experiment shows the effect of the actuator length variation is strongly related with the frequency range of SPR property. A shorter actuator gave a wider SPR frequency range as a longer one had a narrower range. The shorter actuator showed limited control performance in spite of a higher gain was applied because the actuation force was relatively small. Thus an optimal length ratio (actuator length/beam length) was suggested to obtain relevant performance with good stability with DVFB strategy. The result of this investigation could give important information in the design of active control system to suppress unwanted vibration of smart structures with piezoelectric actuators and accelerometers.

  • PDF

Functional Electrical Stimulation with Augmented Feedback Training Improves Gait and Functional Performance in Individuals with Chronic Stroke: A Randomized Controlled Trial

  • Yu, Kyung-Hoon;Kang, Kwon-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.2
    • /
    • pp.74-79
    • /
    • 2017
  • Purpose: The purpose of this study was to compare the effects of the FES-gait with augmented feedback training to the FES alone on the gait and functional performance in individuals with chronic stroke. Methods: This study used a pretest and posttest randomized control design. The subjects who signed the agreement were randomly divided into 12 experimental groups and 12 control groups. The experimental groups performed two types of augmented feedback training (knowledge of performance and knowledge of results) together with FES, and the control group performed FES on the TA and GM without augmented feedback and then walked for 30 minutes for 40 meters. Both the experimental groups and the control groups received training five times a week for four weeks. Results: The groups that received the FES with augmented feedback training significantly showed a greater improvement in single limb support (SLS) and gait velocity than the groups that received FES alone. In addition, timed up and go (TUG) test and six minute walk test (6MWT) showed a significant improvement in the groups that received FES with augmented feedback compared to the groups that received FES alone. Conclusion: Compared with the existing FES gait training, augmented feedback showed improvements in gait parameters, walking ability, and dynamic balance. The augmented feedback will be an important method that can provide motivation for motor learning to stroke patients.

Development and Evaluation of the Auditory Feedback Gait Training System Induced Symmetrical Weight-Bearing in Hemiplegic Patients (편마비 환자의 대칭적 체중부하 유도를 위한 청각적 피드백 보행훈련 시스템 개발 및 평가)

  • Kwon, Y.C.;Lee, H.J.;Tae, K.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.6 no.2
    • /
    • pp.23-30
    • /
    • 2012
  • In this study, we developed a wireless rehabilitation auditory feedback gait training system for symmetrical weight-bearing in patient with CVA. The device consists of an instantaneous shoe equipped with two load-cell sensors. Auditory feedback can be applied according to the weight-bearing. For gait patterns analysis, cadence, walking velocity, stance/swing phase ratio and gait cycle were examined. The clinical test with six healthy volunteers and two hemiplegic patients was performed applying the auditory feedback system. Both normal subjects and hemiplegic patients were increased strength on weight-bearing in affected limb, walking velocity, and cadence after biofeedback device. Also, the stance time with weight-bearing was increased while the swing time was decreased in gait phase. It can be expected that by using the feedback system, the patient with lower limb disorder will be able to reach a better quality of weight-bearing during gait.

  • PDF

A P-type Iterative Learning Controller for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 P형 반복 학습 제어기)

  • 최준영;서원기
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.3
    • /
    • pp.17-24
    • /
    • 2004
  • We present a P-type iterative learning control(ILC) scheme for uncertain robotic systems that perform the same tasks repetitively. The proposed ILC scheme comprises a linear feedback controller consisting of position error, and a feedforward and feedback teaming controller updated by current velocity error. As the learning iteration proceeds, the joint position and velocity mrs converge uniformly to zero. By adopting the learning gain dependent on the iteration number, we present joint position and velocity error bounds which converge at the arbitrarily tuned rate, and the joint position and velocity errors converge to zero in the iteration domain within the adopted error bounds. In contrast to other existing P-type ILC schemes, the proposed ILC scheme enables analysis and tuning of the convergence rate in the iteration domain by designing properly the learning gain.

Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers (균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어)

  • ;Stephen J Elliott;Paolo Gardonio
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

Direct Velocity Feedback for Tip Vibration Control of a Cantilever Beam with a Non-collocated Sensor and Actuator Pair (비동위치화된 센서와 액추에이터를 이용한 외팔보의 끝단 진동에 대한 직접속도 피드백제어)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a theoretical and experimental study of a non-collocated pair of piezopolymer PVDF sensor and piezoceramic PZT actuator, which are bonded on a cantilever beam, in order to suppress unwanted vibration at the tip of the beam. The PZT actuator patch was bonded near the clamped part and the PVDF sensor, which was triangularly shaped, was bonded on the other part of the beam. This is because the triangular PVDF sensor is known that it can detect the tip velocity of a cantilever beam. Because the arrangement of the sensor and actuator pair is not collocated and overlapped each other, the pair can avoid so called 'the in-plane coupling'. The test beam is made of aluminum with the dimension of $200\times20\times2mm$, and the two PZT5H actuators are both $20\times20\times1mm$ and bonded on the beam out-of-phase, and the PVDF sensor is $178mm\times6mm\times52{\mu}m$. Before control, the sensor-actuator frequency response function is confirmed to have a nice phase response without accumulation in a reasonable frequency range of up to 5000 Hz. Both the DVFB and displacement feedback strategies made the error signal from the tip velocity (or displacement) sensor is transmitted to a power amplifier to operate the PZT actuator (secondary source). Both the control methods attenuate the magnitude of the first two resonances in the error spectrum of about 6-7 dB.

  • PDF

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.265-270
    • /
    • 2001
  • This study presents a feedback control methodology for suppression of the vortex shedding from a circular cylinder in a uniform flow. A rotational oscillation is applied as a controlled forcing and the lift coefficient ($C_L$) is used as a feedback signal. A feedback control concept is made based on the phase relation between the rotation velocity and $C_L$ at 'lock-on', The phase between the forcing and the vortex formation is changed $180^{\circ}$ from the phase of enhancing the lock-on state. This concept is examined by solving the Van del Pol equation. The results are satisfactory.

  • PDF

The Effect of Self-controlled Feedback on Proprioception in Elbow Flexion of Healthy Subjects (정상성인의 팔굽 굽힘 시 자기통제 피드백이 고유수용성감각에 미치는 영향)

  • Yoon, Jung-Gyu
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.493-500
    • /
    • 2012
  • PURPOSE: The purpose of this study was to investigate effect of self-controlled feedback on proprioception in elbow flexion. METHODS: Thirty young adult volunteered to participate and were randomly assigned to one of three groups (self-controlled, yoked, control). Power and velocity in elbow flexion was measured by PRIMUS RS (BTE Tech., Hanover, U.S.A). Statistical analysis was used multivariate ANOVA to know effect of self-controlled feedback on proprioception in elbow flexion. Post hoc was used Scheffe. RESULTS: In acquisition phase to practice effect, variable errors in self-controlled group was significantly low scored more than yoked and control group. In retention phase to learning effect, variable errors in self-controlled group was significantly low scored more than yoked and control group. CONCLUSION: Self-controlled feedback was more effective on movement control when the learner could make a decision about receiving feedback after the trial. This seems to support the view that self-controlled feedback benefits learning, because learners can make a decision about feedback based on their performance on a given trial.