• Title/Summary/Keyword: vehicular Networks

Search Result 228, Processing Time 0.024 seconds

Security Analysis of the Khudra Lightweight Cryptosystem in the Vehicular Ad-hoc Networks

  • Li, Wei;Ge, Chenyu;Gu, Dawu;Liao, Linfeng;Gao, Zhiyong;Shi, Xiujin;Lu, Ting;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3421-3437
    • /
    • 2018
  • With the enlargement of wireless technology, vehicular ad-hoc networks (VANETs) are rising as a hopeful way to realize smart cities and address a lot of vital transportation problems such as road security, convenience, and efficiency. To achieve data confidentiality, integrity and authentication applying lightweight cryptosystems is widely recognized as a rather efficient approach for the VANETs. The Khudra cipher is such a lightweight cryptosystem with a typical Generalized Feistel Network, and supports 80-bit secret key. Up to now, little research of fault analysis has been devoted to attacking Khudra. On the basis of the single nibble-oriented fault model, we propose a differential fault analysis on Khudra. The attack can recover its 80-bit secret key by introducing only 2 faults. The results in this study will provides vital references for the security evaluations of other lightweight ciphers in the VANETs.

An Efficient Broadcast Scheme for Disseminating Emergency Message in Urban Vehicular Ad-Hoc Networks (도심의 차량 네트워크에서 긴급 메시지 전파를 위한 효율적인 브로드캐스트 기법)

  • Lee, Kyu-Chang;Han, Ki-Jun;Cho, Keu-Chul;Baek, Young-Mi;Kim, Jun-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.7
    • /
    • pp.605-611
    • /
    • 2013
  • If an accident vehicle propagates emergency messages to other vehicles close to it, the other drivers may realize and avoid the accident spot. In this letter, we propose a broadcast scheme to propagate emergency messages fast in urban VANETs (Vehicular Ad-Hoc Networks) with the help of GPS (Global Position System). In our scheme, a transmitting vehicle chooses the farthest node as the next relay vehicle to propagate emergency messages. And, we suggest an algorithm for intersection recognition and SCF (Store-Carry-Forward) task by taking advantage of periodic hello packets to reduce the propagation time and enhance the delivery ratio.

Delay-Optimized Adaptive Multichannel Backoff Mechanism for VANET (VANET을 위한 지연 최적화 적응적 멀티 채널 백오프 메카니즘)

  • Lee, Jung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.837-844
    • /
    • 2019
  • In this paper, we propose the AMBM(: Adaptive Multi-channel Backoff Machisum) -Mac protocol to provide high throughput for non-safety applications in VANET(: Vehicular Ad Hoc Networks) environment. The proposed protocol guarantees the quality of service of non-safety packets by dynamically adjusting CW(: Channel Window) of WSA(: WAVE Service Advertisement) to maximize throughput between non-safety packets of different priority. It also shows that allocating a large amount of time for channel coordination and time slot reservation for SC and dynamically adjusting CW and CCI as nodes increase to reduces transmission delay than IEEE 1609.9, C-MAC(: Coordinated multi-channel MAC, and Q-VCI(: QoS Variable CCH Interval) protocols.

An Efficient Anonymous Authentication Scheme with Secure Communication in Intelligent Vehicular Ad-hoc Networks

  • Zhang, Xiaojun;Mu, Liming;Zhao, Jie;Xu, Chunxiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3280-3298
    • /
    • 2019
  • Vehicular ad-hoc networks (VANETs) have become increasingly significant in intelligent transportation systems, they play a great role in improving traffic safety and efficiency. In the deployment of intelligent VANETs, intelligent vehicles can efficiently exchange important or urgent traffic information and make driving decisions. Meanwhile, secure data communication and vehicle's identity privacy have been highlighted. To cope with these security issues, in this paper, we construct an efficient anonymous authentication scheme with secure communication in intelligent VANETs. Combing the ElGamal encryption technique with a modified Schnorr signature technique, the proposed scheme provides secure anonymous authentication process for encrypted message in the vehicle-to-infrastructure communication model, and achieves identity privacy, forward security, and reply attack resistance simultaneously. Moreover, except the trusted authority (TA), any outside entity cannot trace the real identity of an intelligent vehicle. The proposed scheme is designed on an identity-based system, which can remove the costs of establishing public key infrastructure (PKI) and certificates management. Compared with existing authentication schemes, the proposed scheme is much more practical in intelligent VANETs.

A Survey on Security Schemes based on Conditional Privacy-Preserving in Vehicular Ad Hoc Networks

  • Al-Mekhlafi, Zeyad Ghaleb;Mohammed, Badiea Abdulkarem
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.105-110
    • /
    • 2021
  • Contact between Vehicle-to-vehicle and vehicle-to-infrastructural is becoming increasingly popular in recent years due to their crucial role in the field of intelligent transportation. Vehicular Ad-hoc networks (VANETs) security and privacy are of the highest value since a transparent wireless communication tool allows an intruder to intercept, tamper, reply and erase messages in plain text. The security of a VANET based intelligent transport system may therefore be compromised. There is a strong likelihood. Securing and maintaining message exchange in VANETs is currently the focal point of several security testing teams, as it is reflected in the number of authentication schemes. However, these systems have not fulfilled all aspects of security and privacy criteria. This study is an attempt to provide a detailed history of VANETs and their components; different kinds of attacks and all protection and privacy criteria for VANETs. This paper contributed to the existing literature by systematically analyzes and compares existing authentication and confidentiality systems based on all security needs, the cost of information and communication as well as the level of resistance to different types of attacks. This paper may be used as a guide and reference for any new VANET protection and privacy technologies in the design and development.

Performance Evaluation for a Unicast Vehicular Delay Tolerant Routing Protocol Networks

  • Abdalla, Ahmed Mohamed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2022
  • Vehicular Ad hoc Networks are considered as special kind of Mobile Ad Hoc Networks. VANETs are a new emerging recently developed, advanced technology that allows a wide set of applications related to providing more safety on roads, more convenience for passengers, self-driven vehicles, and intelligent transportation systems (ITS). Delay Tolerant Networks (DTN) are networks that allow communication in the event of connection problems, such as delays, intermittent connections, high error rates, and so on. Moreover, these are used in areas that may not have end-to-end connectivity. The expansion from DTN to VANET resulted in Vehicle Delay Tolerant Networks (VDTN). In this approach, a vehicle stores and carries a message in its buffer, and when the opportunity arises, it forwards the message to another node. Carry-store-forward mechanisms, packets in VDTNs can be delivered to the destination without clear connection between the transmitter and the receiver. The primary goals of routing protocols in VDTNs is to maximize the probability of delivery ratio to the destination node, while minimizing the total end-to-end delay. DTNs are used in a variety of operating environments, including those that are subject to failures and interruptions, and those with high delay, such as vehicle ad hoc networks (VANETs). This paper discusses DTN routing protocols belonging to unicast delay tolerant position based. The comparison was implemented using the NS2 simulator. Simulation of the three DTN routing protocols GeOpps, GeoSpray, and MaxProp is recorded, and the results are presented.

Artificial neural network for safety information dissemination in vehicle-to-internet networks

  • Ramesh B. Koti;Mahabaleshwar S. Kakkasageri;Rajani S. Pujar
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1065-1078
    • /
    • 2023
  • In vehicular networks, diverse safety information can be shared among vehicles through internet connections. In vehicle-to-internet communications, vehicles on the road are wirelessly connected to different cloud networks, thereby accelerating safety information exchange. Onboard sensors acquire traffic-related information, and reliable intermediate nodes and network services, such as navigational facilities, allow to transmit safety information to distant target vehicles and stations. Using vehicle-to-network communications, we minimize delays and achieve high accuracy through consistent connectivity links. Our proposed approach uses intermediate nodes with two-hop separation to forward information. Target vehicle detection and routing of safety information are performed using machine learning algorithms. Compared with existing vehicle-to-internet solutions, our approach provides substantial improvements by reducing latency, packet drop, and overhead.

A Study and Performance Analysis of TORA Routing Protocol in Vehicular Adhoc Networks

  • R.Jeevitha;K.Thilakavalli;D.Rajagopal
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.195-201
    • /
    • 2024
  • Vehicular Ad-hoc Networks (VANETs) became very popular in few years and it has been widely used in research and industry communities. VANET is a collection of wireless vehicle nodes forming a temporary network without using any centralized Road Side Unit (RSU). VANET is a subset of Mobile Adhoc Networks (MANET). It improves the safety of vehicles. It also supports Intelligent Transportation Systems.Routing is the major component of communication protocols in VANETs. Packets are to be routed from the source node to destination node. Because of frequent topology changes and routing overhead, selection of routing protocol in VANET is a great challenge. There are various routing protocols available for VANET. This paper involves study of Temporally Ordered Routing protocol (TORA) and performance metrics are analyzed with the help of NS2 Simulator.

Effect of the Black-Hole Attack in Vehicular Ad-Hoc Networks

  • Mohamed Anis Mastouri;Salem Hasnaoui
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.139-144
    • /
    • 2024
  • VANETs have become one of the most attractive research areas in the world of wireless networks in recent years. Indeed, vehicular networks have become capable of optimizing road traffic, which significantly reduces the number of accidents through notifications exchanged between nearby vehicles. The routing function based on the opportunistic algorithm is a critical part of the vehicle's communication system and will therefore be an ideal target for attacks that could aim to prevent alert messages from reaching their destination, and thus endanger human lives. The black hole attack is a major threat to the security of VANETs. The main idea of this paper focuses on the analysis of this type of attack in VANETs using Discrete-Time Markov Chains (DTMC). and deduce at the end the effect of the number of malicious nodes on the delivery rate in the network.