• Title/Summary/Keyword: vehicular Networks

Search Result 228, Processing Time 0.042 seconds

Software-Defined Vehicular Networks (SDVN)

  • Al-Mekhlafi, Zeyad Ghaleb
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.231-243
    • /
    • 2022
  • The expansion of new applications and business models is being significantly fueled by the development of Fifth Generation (5G) networks, which are becoming more widely accessible. The creation of the newest intelligent vehicular net- works and applications is made possible by the use of Vehicular Ad hoc Networks (VANETs) and Software Defined Networking (SDN). Researchers have been concentrating on the integration of SDN and VANET in recent years, and they have examined a variety of issues connected to the architecture, the advantages of software defined VANET services, and the new features that can be added to them. However, the overall architecture's security and robustness are still in doubt and have received little attention. Furthermore, new security threats and vulnerabilities are brought about by the deployment and integration of novel entities and several architectural components. In this study, we comprehensively examine the good and negative effects of the most recent SDN-enabled vehicular network topologies, focusing on security and privacy. We examine various security flaws and attacks based on the existing SDVN architecture. Finally, a thorough discussion of the unresolved concerns and potential future study directions is provided.

Machine-to-Machine (M2M) Communications in Vehicular Networks

  • Booysen, M.J.;Gilmore, J.S.;Zeadally, S.;Rooyen, G.J. Van
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.529-546
    • /
    • 2012
  • To address the need for autonomous control of remote and distributed mobile systems, Machine-to-Machine (M2M) communications are rapidly gaining attention from both academia and industry. M2M communications have recently been deployed in smart grid, home networking, health care, and vehicular networking environments. This paper focuses on M2M communications in the vehicular networking context and investigates areas where M2M principles can improve vehicular networking. Since connected vehicles are essentially a network of machines that are communicating, preferably autonomously, vehicular networks can benefit a lot from M2M communications support. The M2M paradigm enhances vehicular networking by supporting large-scale deployment of devices, cross-platform networking, autonomous monitoring and control, visualization of the system and measurements, and security. We also present some of the challenges that still need to be addressed to fully enable M2M support in the vehicular networking environment. Of these, component standardization and data security management are considered to be the most significant challenges.

Collision Avoidance Method Based-on Directional Antenna in Vehicular Ad Hoc Networks (Vehicular Ad Hoc Networks에서 방향성 안테나기반 충돌 회피 기법)

  • Kim, Kyung-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.627-633
    • /
    • 2008
  • In the case of traffic accidents, the broadcasting methods used in the mobile ad hoc network (MANET) cannot applied to transmit reliable message since moving high-speed in vehicular ad hoc networks (VANET) environments. In this paper, in order to guarantee transmitting reliable messages, we propose a collision avoidance method based-on directional antenna in VANET. In order to reduce interference from omni-broadcasting and to avoid hidden node problem from moving high-speed, we employed a forward-handed and backward directional antenna. The authors simulated the proposed method based on directional antenna and showed that the proposed method has been improved in respect to network utilization compared to existing VANET protocols.

  • PDF

An Optimal ODAM-Based Broadcast Algorithm for Vehicular Ad-Hoc Networks

  • Sun, Weifeng;Xia, Feng;Ma, Jianhua;Fu, Tong;Sun, Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3257-3274
    • /
    • 2012
  • Broadcast routing has become an important research field for vehicular ad-hoc networks (VANETs) recently. However, the packet delivery rate is generally low in existing VANET broadcast routing protocols. Therefore, the design of an appropriate broadcast protocol based on the features of VANET has become a crucial part of the development of VANET. This paper analyzes the disadvantage of existing broadcast routing protocols in VANETs, and proposes an improved algorithm (namely ODAM-C) based on the ODAM (Optimized Dissemination of Alarm Messages) protocol. The ODAM-C algorithm improves the packet delivery rate by two mechanisms based on the forwarding features of ODAM. The first distance-based mechanism reduces the possibility of packet loss by considering the angles between source nodes, forwarding nodes and receiving nodes. The second mechanism increases the redundancy of forwarding nodes to guarantee the packet success delivery ratio. We show by analysis and simulations that the proposed algorithm can improve packet delivery rate for vehicular networks compared against two widely-used existing protocols.

V2I Authentication Protocol using Error Correcting Code in VANET Environment (VANET 환경에서 오류수정부호를 사용한 V2I 인증 프로토콜)

  • Lee, Su-Youn
    • Convergence Security Journal
    • /
    • v.11 no.6
    • /
    • pp.37-44
    • /
    • 2011
  • VANET(Vehicular Ad-hoc Network) is a kind of ad hoc networks consist of intelligence vehicular ad nodes, and has become a hot emerging research project in many field. It provide traffic safety, cooperative driving and etc. but has also some security problems that can be occurred in general ad hoc networks. Also, in VANET, vehicles shoul d be able to authenticate each other to securely communicate with network-based infrastructure, and their locations and identifiers should not be exposed from the communication messages. This paper proposes V2I(Vehicular to Infra structure) authentication protocol that anonymity and untraceability of vehicular using Error Correcting Code that ge nerate encoding certification using generation matrix. The proposed scheme based on ECC resolves overhead problems of vehicular secure key management of KDC.

A Distance and Angle Based Routing Algorithm for Vehicular Ad hoc Networks

  • Wang, Jing;Rhee, Kyung-Hyune
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.190-192
    • /
    • 2012
  • Vehicular Ad hoc Networks (VANETs) is the new wireless networking concept of mobile ad hoc networks in research community. Routing in vehicular is a major challenge and research area. The majority of current routing algorithms for VANETs utilize indirect metrics to select the next hop and produce optimal node path. In this paper, we propose a distance and angle based routing algorithm for VANETs, which combines a distance approach with an angle based geographical strategy for selecting the next hop, with the purpose of using direct metrics to build a optimal node route. The proposed algorithm has better performance than the previous scheme.

  • PDF

A Certificate Revocation List Distribution Scheme over the eMBMS for Vehicular Networks

  • Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.10
    • /
    • pp.77-83
    • /
    • 2016
  • To verify the trustworthiness of messages, public key certificates and certificate revocation list(CRL) has been standardized for vehicular networks. However, timely distribution of large CRLs to vehicles should be more elaborated with low bandwidth utilization from a practical point of view. To address this concern, we propose a CRL distribution scheme using long term evolution(LTE) point-to-multicast transmission, namely the enhanced multimedia broadcast multicast service(eMBMS). The schem is much more resource efficient than the existing unicast CRL distribution schemes for vehicular networks and it allows realizing the regional CRL distribution schemes efficiently in LTE network. By means of ns-3 simulation, we analyze the performance, latency, and execution time of the scheme in terms of varying coverage of the multimedia broadcast multicast service over single frequency network (MBFSN).

Fast Mobility Management Using Multi-casting Tunneling in Vehicular Networks (차량 네트워크에서 멀티 캐스팅 터널링을 이용한 고속 이동성 관리 방법)

  • Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.877-884
    • /
    • 2010
  • This paper presents a fast IP mobility management scheme in vehicular networks where multiple wireless network interfaces are used to perform the fast handover without packet loss and handover latency. In order to do that, the IETF standard HMIPv6 has been extended, where multiple simultaneous tunnels between the HMIPv6 MAP and the mobile gateway are dynamically constructed. The architecture for supporting multiple tunnels has been designed and both mathematical analysis and simulation using NS-2 have been done for performance evaluation.

Improving the Performance of OFDM-Based Vehicular Systems through Diversity Coding

  • Arrobo, Gabriel E.;Gitlin, Richard D.
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.132-141
    • /
    • 2013
  • In this paper, we present diversity coded orthogonal frequency division multiplexing (DC-OFDM), an approach to maximize the probability of successful reception and increase the reliability of OFDM-based systems through diversity coding. We focus on the application of DC-OFDM to vehicular networks based on IEEE 802.11p technology and analyze the performance improvement using this new technology. It is shown that DC-OFDM significantly improves the performance of vehicular ad hoc networks in terms of throughput and the expected number of correctly received symbols.

A Handover Mechanism Between Local Mobility Anchors in Proxy Mobile IPv6-based Vehicular Communication Networks (Proxy Mobile IPv6 기반 차량통신망에서 Local Mobility Anchor간 핸드오버 기법)

  • Lim, Yu-Jin;Ahn, Sang-Hyun;Cho, Kwon-Hee
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.243-250
    • /
    • 2010
  • Vehicular communication networking is one of the most important building blocks of Intelligent Transportation System (ITS). The vehicular communication network is a wireless communication system enabling vehicles to communicate with each other as well as with roadside base stations. Mobility management of vehicles which move at high speeds and occasionally make a long journey is an interesting research area of vehicular communication networks. Recently, The Proxy Mobile IPv6 (PMIPv6) protocol is proposed for network-based mobility management to reduce the overhead of mobile nodes. PMIPv6 shifts the burden of the mobility management from mobile nodes to network agents to decrease the overhead and latency for the mobility management. In this paper, we derive the scenario of deploying PMIPv6 in vehicular communication networks and propose a new LMA handover mechanism for realizing the scenario. By carrying out the ns-2 based simulations, we verify the operability of the proposed mechanism.