• Title/Summary/Keyword: vehicles classification

Search Result 191, Processing Time 0.025 seconds

Development of New-type Weight Classification System

  • Park, Byunghyuk;Hwang, Jaeho;Choi, Jaeyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.487-494
    • /
    • 2016
  • In order to comply with the Federal Motor Vehicle Safety Standard(FMVSS) No. 208 that has been in force since September 2003, an automatic airbag suppression system has become an essential option for detecting and protecting infants and children seated in the front passenger seat of vehicles in the U.S. market. MOBIS has developed the world's first weight-based OCS under the name NWCS. NWCS is composed of two sensors and ECU. It is sub-packaged in order to minimize the seat structure deviation. In this paper, technical features, robustness and performance of NWCS are summarized and discussed.

Radar and Vision Sensor Fusion for Primary Vehicle Detection (레이더와 비전센서 융합을 통한 전방 차량 인식 알고리즘 개발)

  • Yang, Seung-Han;Song, Bong-Sob;Um, Jae-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.639-645
    • /
    • 2010
  • This paper presents the sensor fusion algorithm that recognizes a primary vehicle by fusing radar and monocular vision data. In general, most of commercial radars may lose tracking of the primary vehicle, i.e., the closest preceding vehicle in the same lane, when it stops or goes with other preceding vehicles in the adjacent lane with similar velocity and range. In order to improve the performance degradation of radar, vehicle detection information from vision sensor and path prediction predicted by ego vehicle sensors will be combined for target classification. Then, the target classification will work with probabilistic association filters to track a primary vehicle. Finally the performance of the proposed sensor fusion algorithm is validated using field test data on highway.

A Method for Terrain Cover Classification Using DCT Features (DCT 특징을 이용한 지표면 분류 기법)

  • Lee, Seung-Youn;Kwak, Dong-Min;Sung, Gi-Yeul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.683-688
    • /
    • 2010
  • The ability to navigate autonomously in off-road terrain is the most critical technology needed for Unmanned Ground Vehicles(UGV). In this paper, we present a method for vision-based terrain cover classification using DCT features. To classify the terrain, we acquire image from a CCD sensor, then the image is divided into fixed size of blocks. And each block transformed into DCT image then extracts features which reflect frequency band characteristics. Neural network classifier is used to classify the features. The proposed method is validated and verified through many experiments and we compare it with wavelet feature based method. The results show that the proposed method is more efficiently classify the terrain-cover than wavelet feature based one.

Developing a method to estimate vehicle speeds in a low-cost vehicle detector with an inclined sensor (사선형 센서를 이용한 저가 검지장비의 차량속도 추정방법 개발)

  • Kim, Hyoung-Soo;Oh, Ju-Sam
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-67
    • /
    • 2009
  • With the development of high-cost vehicle detectors, low-cost detectors have also been studied due to the advantage that more detectors are provided within limited budgets. This study proposed a method to estimate vehicle speeds using vehicles' track data from auto manufacturers and time stamps obtained when vehicles' tires pass an inclined sensor (here, a tape switch sensor). In speed estimation, small vehicles and large vehicles is distinguished according to the ratio of time stamps for a wheelbase and a rear track obtained from a tape switch sensor. In particular, speed estimation can be adjusted through a parameter to determine vehicles' size so as to take into account location properties such as vehicles' classification ratio. The low-cost vehicle detector with an inclined sensor proposed in this study is expected to be widely utilized to monitor traffic conditions thanks to low cost.

  • PDF

Deep learning-based monitoring for conservation and management of coastal dune vegetation (해안사구 식생의 보전 및 관리를 위한 딥러닝 기반 모니터링)

  • Kim, Dong-woo;Gu, Ja-woon;Hong, Ye-ji;Kim, Se-Min;Son, Seung-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.25-33
    • /
    • 2022
  • In this study, a monitoring method using high-resolution images acquired by unmanned aerial vehicles and deep learning algorithms was proposed for the management of the Sinduri coastal sand dunes. Class classification was done using U-net, a semantic division method. The classification target classified 3 types of sand dune vegetation into 4 classes, and the model was trained and tested with a total of 320 training images and 48 test images. Ignored label was applied to improve the performance of the model, and then evaluated by applying two loss functions, CE Loss and BCE Loss. As a result of the evaluation, when CE Loss was applied, the value of mIoU for each class was the highest, but it can be judged that the performance of BCE Loss is better considering the time efficiency consumed in learning. It is meaningful as a pilot application of unmanned aerial vehicles and deep learning as a method to monitor and manage sand dune vegetation. The possibility of using the deep learning image analysis technology to monitor sand dune vegetation has been confirmed, and it is expected that the proposed method can be used not only in sand dune vegetation but also in various fields such as forests and grasslands.

ILD Vehicle Classification Algorithm using Neural Networks (신경망을 이용한 루프검지기 차종분류 알고리즘)

  • Ki Yong-Kul;Baik Doo-Kwon
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.489-498
    • /
    • 2006
  • In this paper, we suggested a vehicle classification algorithm using pattern recognition method. At present, Inductive Loop Detector is rarely used for vehicle classification because of its low accuracy. To improve the accuracy, we suggest a new algorithm for Loop Detector using neural networks. In the developed algorithm, the inputs to the neural networks are the variation rate of frequency and occupancy-time. The output is classified vehicles. The developed algorithm was assessed at test sites and the recognition rate was 91.3percent. The results verified that the proposed algorithm improves the vehicle classification accuracy compared to the conventional method based on Loop Detector.

Pillar and Vehicle Classification using Ultrasonic Sensors and Statistical Regression Method (통계적 회귀 기법을 활용한 초음파 센서 기반의 기둥 및 차량 분류 알고리즘)

  • Lee, Chung-Su;Park, Eun-Soo;Lee, Jong-Hwan;Kim, Jong-Hee;Kim, Hakil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.428-436
    • /
    • 2014
  • This paper proposes a statistical regression method for classifying pillars and vehicles in parking area using a single ultrasonic sensor. There are three types of information provided by the ultrasonic sensor: TOF, the peak and the width of a pulse, from which 67 different features are extracted through segmentation and data preprocessing. The classification using the multiple SVM and the multinomial logistic regression are applied to the set of extracted features, and has achieved the accuracy of 85% and 89.67%, respectively, over a set of real-world data. The experimental result proves that the proposed feature extraction and classification scheme is applicable to the object classification using an ultrasonic sensor.

Crops Classification Using Imagery of Unmanned Aerial Vehicle (UAV) (무인비행기 (UAV) 영상을 이용한 농작물 분류)

  • Park, Jin Ki;Park, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.91-97
    • /
    • 2015
  • The Unmanned Aerial Vehicles (UAVs) have several advantages over conventional RS techniques. They can acquire high-resolution images quickly and repeatedly. And with a comparatively lower flight altitude i.e. 80~400 m, they can obtain good quality images even in cloudy weather. Therefore, they are ideal for acquiring spatial data in cases of small agricultural field with mixed crop, abundant in South Korea. This paper discuss the use of low cost UAV based remote sensing for classifying crops. The study area, Gochang is produced by several crops such as red pepper, radish, Chinese cabbage, rubus coreanus, welsh onion, bean in South Korea. This study acquired images using fixed wing UAV on September 23, 2014. An object-based technique is used for classification of crops. The results showed that scale 250, shape 0.1, color 0.9, compactness 0.5 and smoothness 0.5 were the optimum parameter values in image segmentation. As a result, the kappa coefficient was 0.82 and the overall accuracy of classification was 85.0 %. The result of the present study validate our attempts for crop classification using high resolution UAV image as well as established the possibility of using such remote sensing techniques widely to resolve the difficulty of remote sensing data acquisition in agricultural sector.

Method for Inferring Format Information of Data Field from CAN Trace (CAN 트레이스 분석을 통한 데이터 필드 형식 추론 방법 연구)

  • Ji, Cheongmin;Kim, Jimin;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.167-177
    • /
    • 2018
  • As the number of attacks on vehicles has increased, studies on CAN-based security technologies are actively being carried out. However, since the upper layer protocol of CAN differs for each vehicle manufacturer and model, there is a great difficulty in researches such as developing anomaly detection for CAN or finding vulnerabilities of ECUs. In this paper, we propose a method to infer the detailed structure of the data field of CAN frame by analyzing CAN trace to mitigate this problem. In the existing Internet environment, many researches for reverse engineering proprietary protocols have already been carried out. However, CAN bus has a structure difficult to apply the existing protocol reverse engineering technology as it is. In this paper, we propose new field classification methods with low computation-cost based on the characteristics of data in CAN frame and existing field classification method. The proposed methods are verified through implementation that analyze CAN traces generated by simulations of CAN communication and actual vehicles. They show higher accuracy of field classification with lower computational cost compared to the existing method.

Unsupervised one-class classification for condition assessment of bridge cables using Bayesian factor analysis

  • Wang, Xiaoyou;Li, Lingfang;Tian, Wei;Du, Yao;Hou, Rongrong;Xia, Yong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.