• Title/Summary/Keyword: vehicle-to-roadside communication

Search Result 37, Processing Time 0.023 seconds

A Study on Design of Microstrip Patch Antenna for Dedicated Short Range Communication (DSRC용 마이크로스트립 패치 안테나 설계 연구)

  • Park, Byeong-Ho;Choi, Yong-Seok;Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.393-400
    • /
    • 2015
  • As the development and distribution of the intelligent transport system is spreading recently and some of the services are commercialized through a pilot project, interest in DSRC with high utilization is increasing and antennas for roadside and on board equipment are being studied. A single patch was used for a vehicle antenna due to the requests of miniaturization of size, but there was performance degradation in most cases due to miniaturization. In addition, some methods to improve performance have been used in the antennas that were previously researched using the arrays, but they have the disadvantages of bulkiness in size of the antennas when using the arrays. Therefore, in this paper, the CPW fed microstrip patch antenna with the simple structure of being compact and easy to produce, which can be used in the OBU of DSRC, was designed.

Certificate Revocation in Connected Vehicles

  • Sami S. Albouq
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.13-20
    • /
    • 2023
  • In connected vehicles, drivers are exposed to attacks when they communicate with unauthenticated peers. This occurs when a vehicle relies on outdated information resulting in interactions with vehicles that have expired or revoked certificates claiming to be legitimate nodes. Vehicles must frequently receive or query an updated revoked certificate list to avoid communicating with suspicious vehicles to protect themselves. In this paper, we propose a scheme that works on a highway divided into clusters and managed by roadside units (RSUs) to ensure authenticity and preserve hidden identities of vehicles. The proposed scheme includes four main components each of which plays a major role. In the top hierarchy, we have the authority that is responsible for issuing long-term certificates and managing and controlling all descending intermediate authorities, which cover specific regions (e.g., RSUs) and provide vehicles with short-term pseudonyms certificates to hide their identity and avoid traceability. Every certificate-related operation is recorded in a blockchain storage to ensure integrity and transparency. To regulate communication among nodes, security managers were introduced to enable authorization and access right during communications. Together, these components provide vehicles with an immediately revoked certificate list through RSUs, which are provided with publish/subscribe brokers that enable a controlled messaging infrastructure. We validate our work in a simulated smart highway environment comprising interconnected RSUs to demonstrate our technique's effectiveness.

A Simulation Study of Urban Public Transport Transfer Station Based on Anylogic

  • Liu, Weiwei;Wang, Fu;Zhang, Chennan;Zhang, Jingyu;Wang, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1216-1231
    • /
    • 2021
  • With the increase in the population of our cities and the rapid increase in the number of private cars, urban traffic has become more and more congested. At this stage, urban public transportation has become one of the main ways to improve urban traffic congestion. Aiming at the problem of how to improve the basic capacity of buses in multi-line transfer stations, this paper conducts simulation research based on anylogic software. Through micro-simulation analysis of vehicles entering, stopping, and exiting the station, combined with the delay model theory, the vehicle is given Stop organization optimization and station layout improvement methods, so that vehicles can run in the station more stably, smoothly and safely. Case analysis shows that applying this method to the roadside parking problem, the main and auxiliary bus stations have a significant improvement in operating capacity compared with the conventional tandem double bus stations, and the service level of the main and auxiliary bus stations has been significantly improved.

A RSU-Aided Resource Search and Cloud Construction Mechanism in VANETs (차량 네트워크에서 RSU를 이용한 리소스 검색 및 클라우드 구축 방안)

  • Lee, Yoonhyeong;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.3
    • /
    • pp.67-76
    • /
    • 2020
  • With the fast development in wireless communications and vehicular technologies, vehicular ad hoc networks (VANETs) have enabled to deliver data between vehicles. Recently, VANETs introduce a Vehicular Cloud (VC) model for collaborating to share and use resources of vehicles to create value-added services. To construct a VC, a vehicle should search vehicles that intend to provide their own resource. The single-hop search cannot search enough provider vehicles due to a small coverage and non-line-of-sights of communications. On the other hand, the multi-hop search causes very high traffics for large coverage searching and frequent connection breakages. Recently, many Roadside Units (RSUs) have been deployed on roads to collect the information of vehicles in their own coverages and to connect them to Internet. Thus, we propose a RSU-aided vehicular resource search and cloud construction mechanism in VANETS. In the proposed mechanism, a RSU collects the information of location and mobility of vehicles and selects provider vehicles enabled to provide resources needed for constructing a VC of a requester vehicle based on the collected information. In the proposed mechanism, the criteria for determining provider vehicles to provide resources are the connection duration between each candidate vehicle and the requester vehicle, the resource size of each candidate vehicle, and its connection starting time to the requester vehicle. Simulation results verify that the proposed mechanism achieves better performance than the existing mechanism.

Methodology for Determining RSE Spacing for Vehicle-Infrastructure Integration(VII) Based Traffic Information System (Focused on Uninterrupted Traffic Flow) (차량-인프라 연계(VII) 기반 교통정보시스템의 RSE 설치간격 결정 방법론 (연속류를 중심으로))

  • Park, Jun-Hyeong;O, Cheol;Im, Hui-Seop;Gang, Gyeong-Pyo
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.29-44
    • /
    • 2009
  • A variety of research efforts, using advanced wireless communication technologies, have been made to develop more reliable traffic information system. This study presents a novel decentralized traffic information system based on vehicle infrastructure integration (VII). A major objective of this study was also to devise a methodology for determining appropriate spacing of roadside equipment (RSE) to fully exploit the benefits of the proposed VII-based traffic information system. Evaluation of travel time estimation accuracy was conducted with various RSE spacings and the market penetration rates of equipped vehicle. A microscopic traffic simulator, VISSIM, was used to obtain individual vehicle travel information for the evaluation. In addition, the ANOVA tests were conducted to draw statistically significant results of simulation analyses in determining the RSE spacing. It is expected that the proposed methodology will be a valuable precursor to implementing capability-enhanced next generation traffic information systems under the forthcoming ubiquitous transportation environment.

Traffic Control using Q-Learning Algorithm (Q 학습을 이용한 교통 제어 시스템)

  • Zheng, Zhang;Seung, Ji-Hoon;Kim, Tae-Yeong;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5135-5142
    • /
    • 2011
  • A flexible mechanism is proposed in this paper to improve the dynamic response performance of a traffic flow control system in an urban area. The roads, vehicles, and traffic control systems are all modeled as intelligent systems, wherein a wireless communication network is used as the medium of communication between the vehicles and the roads. The necessary sensor networks are installed in the roads and on the roadside upon which reinforcement learning is adopted as the core algorithm for this mechanism. A traffic policy can be planned online according to the updated situations on the roads, based on all the information from the vehicles and the roads. This improves the flexibility of traffic flow and offers a much more efficient use of the roads over a traditional traffic control system. The optimum intersection signals can be learned automatically online. An intersection control system is studied as an example of the mechanism using Q-learning based algorithm, and simulation results showed that the proposed mechanism can improve the traffic efficiency and the waiting time at the signal light by more than 30% in various conditions compare to the traditional signaling system.

A Mechanism to configure for Connected Car Service Environment using Mobile Virtual Fence (모바일 가상 펜스를 이용한 커넥티드 카 서비스 환경 구성 메커니즘)

  • Eom, Young-Hyun;Choi, Young-Keun;Kim, Inhwan;Yoo, Hyunmi;Cho, Sungkuk;Jeon, Byungkook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.227-233
    • /
    • 2018
  • In recent years, connected car, which has sensors and computers attached to vehicles used to detect the surrounding environment, has been actively studied. However, in order to configure the connected car environment, various sensors and roadside equipments are required to detect the surrounding environment of the vehicle, and also communication techniques for transmitting the collected data are in demands. Therefore, in this paper, the mobile virtual fence that collects and communicates the data of the surrounding environment through the sensor mounted on the mobile device is applied to the vehicles that were released before the connected car service environment was constructed, We propose a mechanism to receive the service and show the possibility through experiment.