• Title/Summary/Keyword: vehicle-to-roadside communication

Search Result 37, Processing Time 0.022 seconds

Implementation of Inter-vehicle Communication System and Experiments of Longitudinal Vehicle Platoon Control via a Testbed

  • Kim, Tae-Min;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.711-716
    • /
    • 2003
  • This study considers the implementation issues of the inter-vehicle communication system for the vehicle platoon experiments via a testbed. The testbed, which consists of three scale vehicles and one RCS(remote control station), is developed as a tool for functions evaluation between simulation studies and full-sized vehicle researches in the previous study. The cooperative communication of the vehicle-to-vehicle or the vehicle-to-roadside plays a key role for keeping the relative spacing of vehicles small in a vehicle platoon. The static platoon control, where the number of vehicles remains constant, is sufficient for the information to be transmitted in the suitably fixed interval, while the dynamic platoon control such as merge or split requires more flexible network architecture for the dynamical coordination of the communication sequence. In this study, the wireless communication device and the reliable protocol of the flexible network architecture are implemented for our testbed, using the low-cost, ISM band transceiver and the 8-bit microcontroller.

  • PDF

Design and Evaluation of Telematics User Interface for Ubiquitous Vehicle

  • Hong, Won-Kee;Kim, Tae-Hwan;Ko, Jaepil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2014
  • In the ubiquitous computing environment, a ubiquitous vehicle will be a communication node in the vehicular network as well as the means of ground transportation. It will make humans and vehicles seamlessly and remotely connected. Especially, one of the prominent services in the ubiquitous vehicle is the vehicle remote operation. However, mutual-collaboration with the in-vehicle communication network, the vehicle-to-vehicle communication network and the vehicle-to-roadside communication network is required to provide vehicle remote operation services. In this paper, an Internet-based human-vehicle interfaces and a network architecture is presented to provide remote vehicle control and diagnosis services. The performance of the proposed system is evaluated through a design and implementation in terms of the round trip time taken to get a vehicle remote operation service.

Development and Comparison of Centralized and Decentralized ATIS Models with Simulation Method

  • Kim, Hoe-Kyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • Traffic congestion is a source of significant economic and social costs in urban areas. Intelligent Transportation Systems (ITS) are a promising means to help alleviate congestion by utilizing advanced sensing, computing, and communication technologies. This paper proposes and investigates a basic and advanced ITS framework Advanced Traveler Information System (ATIS) using wireless Vehicle to Roadside (Centralized ATIS model: CA model) and Vehicle to Vehicle (DeCentralized ATIS model: DCA model) communication and assuming an ideal communication environment in the typical $6{\times}6$ urban grid traffic network. Results of this study indicate that an ATIS using wireless communication can save travel time given varying combinations of system characteristics: traffic flow, communication radio range, and penetration ratio. Also, all tested metrics of the CA and DCA models indicate that the system performance of both models is almost identical regardless of varying traffic demand and penetration ratios. Therefore, DCA model can be a reasonable alternative to the fixed infrastructure based ATIS model (CA model).

Traffic Signal Control Scheme for Traffic Detection System based on Wireless Sensor Network (무선 센서 네트워크 기반의 차량 검지 시스템을 위한 교통신호제어 기법)

  • Hong, Won-Kee;Shim, Woo-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.719-724
    • /
    • 2012
  • A traffic detection system is a device that collects traffic information around an intersection. Most existing traffic detection systems provide very limited traffic information for signal control due to the restriction of vehicle detection area. A signal control scheme determines the transition among signal phases and the time that a phase lasts for. However, the existing signal control scheme do not resolve the traffic congestion effectively since they use restricted traffic information. In this paper, a new traffic detection system with a zone division signal control scheme is proposed to provide correct and detail traffic information and decrease the vehicle's waiting time at the intersection. The traffic detection system obtains traffic information in a way of vehicle-to-roadside communication between vehicles and sensor network. A new signal control scheme is built to exploit the sufficient traffic information provided by the proposed traffic detection system efficiently. Simulation results show that the proposed signal control scheme has 121 % and 56 % lower waiting time and delay time of vehicles at an intersection than other fuzzy signal control scheme.

Vehicle Communication System Implementation for u-TSN and Its Performance Evaluations (u-TSN에서 차량 통신시스템 구성 및 성능평가)

  • Jeon, Sung-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.7
    • /
    • pp.35-40
    • /
    • 2011
  • In u-TSN environment, the communication between vehicle terminal and roadside equipment is very important to support prompt service and to secure road traffic information in real-time upon organizing traffic system. This study suggested V2I or I2V communication service scenario for performance test on vehicle communication system as well as V2V inter-vehicle communication service scenario for emergency information transmission which requires rapidity and accuracy. After implementing real inter-vehicle communication system, we performed vehicle communication experiment following suggested communication service scenario to test the performance. Consequently, we could draw out the optimal transmission mode setup condition, and the result can be applied to the development of stable and efficient u-TSN vehicle communication system.

An Efficient AP Selection Strategy in Wi-Fi based Vechicle-to-Infrastructure Communications (Wi-Fi 기반의 차량과 기지국간 통신에서 효과적인 AP 선택에 관한 연구)

  • Hwang, Jae-Ryong;Lee, Hwa-Ryong;Choi, Jae-Hyuk;Yoo, Joon;Kim, Chong-Kwon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.491-498
    • /
    • 2010
  • Wi-Fi based vehicle-to-infrastructure (V2I) communication is an emerging solution to improve the safety, traffic efficiency, and comfort of passengers. However, due to the high mobility of vehicles and the limited coverage of Wi-Fi APs, the V2I system may suffer from frequent handoffs although roadside APs can support cost effective Internet connectivity. Such problem of V2I systems can be overcome with Mobile AP (MAP) platform. The MAPs yield longer service duration by moving along with vehicles, yet they provide a lower link capacities than the roadside APs. In this paper, we propose a new association control mechanism that effectively determines whether the vehicle will select a fixed roadside-AP or a nearby MAP in mobile vehicular network environments. We consider both the achievable link bandwidth and available connection duration as a selection criterion and provide their run-time estimation method. Extensive simulation using real traces show significant performance improvements.

Vehicle Arbitration by Dynamic Random Delay Counter Method (동적 랜덤지연계수법에 의한 차량 중재 기법)

  • 장명덕;서재홍김용득
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.747-750
    • /
    • 1998
  • This paper deals with the vehicle arbitration algorithm used in communication system between vehicles and a roadside control unit. To Improve the performance of vehicle arbitration, a random delay counter method is taken into account and modified to select the optimal maximum count value according to the vehicle arrival rate. The suggested algorithm is tested by computer simulation andthe enhanced performance was shown. This method could be applied to various systems which include the communications between transponders and a control unit.

  • PDF

Design of In and Outdoor communication hub in Vehicular networks (차량 네트워크에서 내·외부 네트워크 연결을 위한 통신허브 설계)

  • Lee, Myung-Sub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.187-194
    • /
    • 2012
  • Vehicular communication networking is one of the most important building blocks of Intelligent Transportation System(ITS). The vehicular communication network is a wireless communication system enabling vehicles to communicate with each other as well as with roadside base stations. Especially, Wi-Fi based vehicle-to-infrastructure(V2I) communication is an emerging solution to improve the safety, traffic efficiency, and comfort of passengers. In this paper, we proposed a new communication hub platform for vehicles, and explained vehicle communication technology in short. Through car simulation results, we show thar our proposed system reduces signaling interference.

Multihop Vehicle-to-Infrastructure Routing Based on the Prediction of Valid Vertices for Vehicular Ad Hoc Networks

  • Shrestha, Raj K.;Moh, Sangman;Chung, IlYong;Shin, Heewook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.4
    • /
    • pp.243-253
    • /
    • 2010
  • Multihop data delivery in vehicular ad hoc networks (VANETs) suffers from the fact that vehicles are highly mobile and inter-vehicle links are frequently disconnected. In such networks, for efficient multihop routing of road safety information (e.g. road accident and emergency message) to the area of interest, reliable communication and fast delivery with minimum delay are mandatory. In this paper, we propose a multihop vehicle-to-infrastructure routing protocol named Vertex-Based Predictive Greedy Routing (VPGR), which predicts a sequence of valid vertices (or junctions) from a source vehicle to fixed infrastructure (or a roadside unit) in the area of interest and, then, forwards data to the fixed infrastructure through the sequence of vertices in urban environments. The well known predictive directional greedy routing mechanism is used for data forwarding phase in VPGR. The proposed VPGR leverages the geographic position, velocity, direction and acceleration of vehicles for both the calculation of a sequence of valid vertices and the predictive directional greedy routing. Simulation results show significant performance improvement compared to conventional routing protocols in terms of packet delivery ratio, end-to-end delay and routing overhead.

Dynamic Vehicle Arbitration Algorithm on Multilane (다중 차선에서의 차량 우선 처리를 위한 동적 중재 알고리즘)

  • Jang, Myung-Deok;Yoo, Se-Keun;Kim, Yong-Deak
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.16-24
    • /
    • 1999
  • This paper deals with the dynamic vehicle arbitration algorithm for communication between vehicles and a roadside control init on multilane environment. The suggested algorithm varies its parameter values according to the current vehicle arrival rate to get the maximum performance. To get the optimum parameter values, arbitration methods that use random delay counter and persist mechanism were taken into account and the performance of these methods with respect to the vehicle arrival rate was analyzed by computer simulation. After applying the optimum parameter values to suggested algorithm, it is shown that more enhanced reliability was acquired This algorithm could be applied to various systems which include the communication between a transponder and a control unit.

  • PDF