• Title/Summary/Keyword: vehicle-bridge interaction analysis

Search Result 96, Processing Time 0.02 seconds

Dynamic Analysis of Highway Bridges by 3-D. Vehicle Model Considering Tire Enveloping (타이어 접지폭을 고려한 3차원 차량모델에 의한 도로교의 동적해석)

  • Chung, Tae Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.989-999
    • /
    • 2006
  • In this paper, numerical analysis method to perform linear dynamic analysis of bridge considering the road surface roughness and bridge-vehicle interaction when vehicle is moving on bridge is presented. The vehicle and bridge are modeled as three-dimension where contact length of tire and pitching of tandem spring are considered and single truck with 2-axles and 3- axles, and tractor-trailer with 5-axles are modeled as 7-D.O.F., 8-D.O.F., and 14-D.O.F., respectively. Dynamic equations of vehicle are derived from the Lagrange's equation and solution of the equation is obtained by Newmark-${\beta}$ method. The surface roughness of bridge deck for this analysis is generated from power spectral density (PSD) function. Beam element for the main girder, shell element for concrete deck and rigid link between main girder and concrete deck are used. The equations of the motion of bridges are solved by mode-superposition procedures. The proposed procedure is validated by comparing the results with the experimental data by Whittemore and Fenves.

Vertical Vibration Control of High Speed Train-Steel Arch Bridge using Vibration Control Device (진동제어장치를 이용한 고속열차-강아치교의 수직진동제어)

  • 고현무;강수창;유상희;옥승용;추진교
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.360-367
    • /
    • 2003
  • This paper presents passive vibration control method to suppress train-induced vibration on a long-span steel arch bridge. According to the train load frequency analysis, undesirable resonance of a bridge will occur when the impact frequency of the train axles are close to the modal frequencies of the bridge. Because the first mode shape of the long-span steel arch bridge may take anti-symmetric shape along the bridge direction, however, the optimal control configuration for resonance suppression should be considered carefully In this study, bridge-vehicle element is used to estimate the bridge-train interaction precisely. From the numerical simulation of a loom steel arch bridge under TGV-K train loading, dynamic magnification influences are evaluated according to vehicle moving speed and efficient control system with passive dampers are presented in order to diminish the vertical displacement and vertical acceleration.

  • PDF

Running safety of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city

  • Zhang, Yunfei;Li, Jun;Chen, Zhaowei;Xu, Xiangyang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.207-222
    • /
    • 2020
  • Due to the rugged terrain, metro lines in mountain city across numerous wide rivers and deep valleys, resulting in instability of high-pier bridge and insecurity of metro train subjected to fluctuating crosswind. To ensure the safe operation in metro lines in mountain cities, running safety of the metro train over the high-pier bridge under crosswind is analyzed in this paper. Firstly, the dynamic model of the wind-train-bridge (WTB) system is built, in which the speed-up effect of crosswind is fully considered. On the basis of time domain analysis, the basic characteristics of the WTB system with high-pier are analyzed. Afterwards, the dynamic responses varies with train speed and wind speed are calculated, and the safety zone of metro train over a high-pier bridge subjected to fluctuating crosswind in mountain city is determined. The results indicate that, fluctuating crosswind triggers drastic vibration to the metro train and high-pier bridges, which in turn causes running instability of the train. For this reason, the corresponding safety zone for metro train running on the high-pier is proposed, and the metro traffic on the high-pier bridge should be closed as the mean wind speed of standard height reaches 9 m/s (15.6 m/s for the train).

Experimental and numerical studies of aerodynamic forces on vehicles and bridges

  • Han, Yan;Hu, Jiexuan;Cai, C.S.;Chen, Zhengqing;Li, Chunguang
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.163-184
    • /
    • 2013
  • An accurate identification of the aerodynamic characteristics of vehicles and the bridge is the premise for the coupled vibration analysis of a wind-vehicle-bridge system. At present, the interaction of aerodynamic forces between the road vehicles and bridge is ignored in most previous studies. In the present study, an experimental setup was developed to measure the aerodynamic characteristics of vehicles and the bridge for different cases in a wind tunnel considering the aerodynamic interference. The influence of the wind turbulence, the wind speed, the vehicle interference, and the vehicle position on the aerodynamic coefficients of vehicles, and the influence of vehicles on the static coefficients of the bridge were investigated, based on the experimental results. The variations in the aerodynamic characteristics of vehicles and the bridge were studied and the measured results were validated according to the results of surface pressure measurements on the vehicle and the bridge. The measured results were further validated by comparing the measured results with values derived numerically. The measured results showed that the wind turbulence, the vehicle interference, and the vehicle position significantly affected the aerodynamic coefficients of vehicles. However, the influence of the wind speed on the aerodynamic coefficients of the studied vehicle is small. The static coefficients of the bridge were also significantly influenced by the presence of vehicles.

Optimal Design of Reinforced Rail over Connection Section of Bridge and Embankment (교량/토공 접속구간 보강레일의 최적설계)

  • Yang, S.C.;Kang, Y.S.;Kim, E.
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.256-263
    • /
    • 2002
  • This paper deal with optimal design of reinforced track as a track reinforcing method for transition area of track support stiffness in transition area between bridge and earthwork. When vehicle passes through transition area, dynamic properties between vehicle and track are studied by the analysis of vehicle-train interaction for the each case when reinforced tracks are used or not. furthermore, optimum decision of type and length of track are made based on the performance adapting variable parameters : support stiffness of track for bridge and earthwork, heading direction of vehicle and type and length of track.

  • PDF

Evaluation of Impact Factor in Suspension Bridges under A Series of Moving Vehicles (일련의 주행 차량에 의한 현수교의 충격계수 평가)

  • Park, Yong Myung;Kim, Dong Hyun;Kim, Hee Soon;Park, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.485-498
    • /
    • 2014
  • In this paper, vehicle-bridge interaction analysis under a series of moving vehicles to simulate a lane load was performed to estimate impact factor of the main cable, hanger and girder for the selected suspension bridges with 404m and 1545m main span. Korea Bridge Design Code(Limit State Design) was selected for the live model in which KL-510 truck was modeled 6-d.o.f. vehicle and a lane load was simulated by a series of single-axle vehicles. For the 404m main span bridge, hinge-type and floating-type girders at the tower were considered to examine the impact factor according to the connection and supporting type of the girders. The parameters considered herein are the types of live load-a truck only and a truck plus lane load, eccentricity of moving vehicles, road surface roughness and vehicle speed. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck only. The impact factors were also evaluated by using the influence line method that is commonly used in cable-supported bridges and compared with those from vehicle-bridge interaction analysis.

Vibration behaviors of a damaged bridge under moving vehicular loads

  • Yin, Xinfeng;Liu, Yang;Kong, Bo
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.199-216
    • /
    • 2016
  • A large number of bridges were built several decades ago, and most of which have gradually suffered serious deteriorations or damage due to the increasing traffic loads, environmental effects, and inadequate maintenance. However, very few studies were conducted to investigate the vibration behaviors of a damaged bridge under moving vehicles. In this paper, the vibration behaviors of such vehicle-bridge system are investigated in details, in which the effects of the concrete cracks and bridge surface roughness are particularly considered. Specifically, two vehicle models are introduced, i.e., a simplified four degree-of-freedoms (DOFs) vehicle model and a more complex seven DOFs vehicle model, respectively. The bridges are modeled in two types, including a single-span uniform beam and a full scale reinforced concrete high-pier bridge, respectively. The crack zone in the reinforced concrete bridge is considered by a damage function. The bridge and vehicle coupled equations are established by combining the equations of motion of both the bridge and vehicles using the displacement relationship and interaction force relationship at the contact points between the tires and bridge. The numerical simulations and verifications show that the proposed modeling method can rationally simulate the vibration behaviors of the damaged bridge under moving vehicles; the effect of cracks on the impact factors is very small and can be neglected for the bridge with none roughness, however, the effect of cracks on the impact factors is very significant and cannot be neglected for the bridge with roughness.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

Traffic-induced vibrations at the wet joint during the widening of concrete bridges and non-interruption traffic control strategies

  • Junyong Zhou;Zunian Zhou;Liwen Zhang;Junping Zhang;Xuefei Shi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.411-423
    • /
    • 2023
  • The rapid development of road transport has increased the number of bridges that require widening. A critical issue in the construction of bridge widening is the influence of vibrations of the old bridge on the casting of wet joint concrete between the old and new bridges owing to the running traffic. Typically, the bridge is closed to traffic during the pouring of wet joint concrete, which negatively affects the existing transportation network. In this study, a newly developed microscopic traffic load modeling approach and the vehicle-bridge interaction theory are incorporated to develop a refined numerical framework for the analysis of random traffic-bridge coupled dynamics. This framework was used to investigate traffic-induced vibrations at the wet joint of a widened bridge. Based on an experimental study on the vibration resistance of wet joint concrete, traffic control strategies were proposed to ensure the construction performance of cast-in-site wet joint concrete under random traffic without interruption. The results show that the vibration displacement and frequency of the old bridge, estimated by the proposed framework, were comparable with those obtained from field measurements. Based on the target peak particle velocity and vibration amplitude of the wet joint concrete, it was found that traffic control measures, such as limiting vehicle gross weight and limiting traffic volume by closing an additional traffic lane, could ensure the construction performance of the wet joint concrete.

Analysis of Moving Vehicle Load Distribution of Curved Steel Box Girder Bridges considering Various Support Conditions (곡선교의 받침특성에 따른 주행차량하중분배 특성분석)

  • Kim, Sang Hyo;Lee, Yong Seon;Cho, Kwang Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.711-720
    • /
    • 2002
  • A 3-D numerical model, which could demonstrate the static and dynamic responses of a curved bridge more precisely with the moving vehicles, was developed The dynamic response induced by the centrifugal rolling motion of vehicle was identified according to the variations of the partial grade and the curvature of the slab. Dynamic characteristics of the curved bridge with the moving vehicle were analyzed under the condition of support types and two different support systems. Parametric studies were conducted to compare the efficiency of load distribution in the curved bridge. In general, while the vehicle was crossing the curved bridge, negative reaction occurred in the inside of the girder. The final result showed that the support system located outside the girder was more advantageous than other systems, and the characteristics of load distributions differed from the others in the various conditions of support systems.