• Title/Summary/Keyword: vehicle radar

Search Result 242, Processing Time 0.024 seconds

A Study of the Development Test and Evaluation and Verification Procedure of a Multi-Mission USV, M-Searcher (복합임무 무인수상정의 개발시험평가 및 검증절차에 관한 고찰)

  • Park, hin-Bae;Kim, Won-Jae;Lee, Kurnchul
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.402-409
    • /
    • 2018
  • This paper describes the plan and procedure of a development test and evaluation that will be performed to verify the performance and technology of multi-mission unmanned surface vehicles (MMUSVs). In order to verify the design requirement of MMUSVs, we designed and manufactured the common platform of MMUSVs, which have an overall length of8.4 m, a displacement of 3,100 kg, and a speed of more than35 kts. The platform is equipped with several sub-systems, including radar and an EOTS/IRS. The EOTS/IRS, along with the search radar, is used for effective detection, identification, and targeting. The core technologies of MMUSV for DT&E will be investigated. The common platform design technologies, remote operating and control system technologies, autonomous navigation technologies, and unmanned operational technology of sensors and equipment will be studied for the development of the MMUSV's core technologies. The system will be able to make precise observations and track targets both manually and automatically during day and night conditions. Currently, the verification tests for each of the technologies and for the integrated system are in the pipeline for DT&E, which will be performed next year. Also, software reliability and life tests will be performed.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

A Study on Sensor Modeling for Virtual Testing of ADS Based on MIL Simulation (MIL 시뮬레이션 기반 ADS 기능 검증을 위한 환경 센서 모델링에 관한 연구)

  • Shin, Seong-Geun;Baek, Yun-Seok;Park, Jong-Ki;Lee, Hyuck-Kee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.331-345
    • /
    • 2021
  • Virtual testing is considered a major requirement for the safety verification of autonomous driving functions. For virtual testing, both the autonomous vehicle and the driving environment should be modeled appropriately. In particular, a realistic modeling of the perception sensor system such as the one having a camera and radar is important. However, research on modeling to consistently generate realistic perception results is lacking. Therefore, this paper presents a sensor modeling method to provide realistic object detection results in a MILS (Model in the Loop Simulation) environment. First, the key parameters for modeling are defined, and the object detection characteristics of actual cameras and radar sensors are analyzed. Then, the detection characteristics of a sensor modeled in a simulation environment, based on the analysis results, are validated through a correlation coefficient analysis that considers an actual sensor.

Analysis of orbit control for allocation of small SAR satellite constellation (초소형 SAR 위성군의 배치를 위한 궤도 제어 분석)

  • Song, Youngbum;Son, Jihae;Park, Jin-Han;Song, Sung-Chan;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.8-16
    • /
    • 2022
  • This paper presents the orbital control for positioning micro synthetic aperture radar (SAR) satellites for all-weather monitoring around the Korean Peninsula. In Small SAR technology experimental project (S-STEP) developed in Korea, multiple satellites are placed at equal intervals in multiple orbital planes to secure an average revisit period for the region around the Korean Peninsula. Satellites entering the same orbital plane use ion thrusters to control their orbits and the separation velocity from the launch vehicle to distribute them evenly across the orbit. For an orbital that places the satellites equally spaced in the same orbital plane, the shape of the satellite constellation is formed by adjusting the difference in drift rates between the satellites. This paper presents, different types of satellite constellations, and the results of satellite constellation placement according to launch strategies are presented. In addition, a method and limitations in shortening the duration of orbital deployment are presented.

Comparison of the Methodologies for Calculating Expressway Space Mean Speed Using Vehicular Trajectory Information from a Radar Detector (레이더검지기의 차량 궤적 정보를 이용한 고속도로 공간평균속도 산출방법 비교)

  • Han, Eum;Kim, Sang Beom;Rho, Jeong Hyun;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.3
    • /
    • pp.34-44
    • /
    • 2016
  • This study was initiated to evaluate the performance of methodologies to estimate the space mean speed(SMS) using the time mean speed(TMS) which was collected from the vehicle detection system(VDS) in expressways. To this end, the methodologies presented in prior studies were firstly summarized. It is very hard to achieve exact SMSs and TMSs due to mechanical and communication errors in the field. Thus, a microscopic traffic simulation model was utilized to evaluated the performance. As a result, the harmonic mean and volume-distance weighted harmonic mean were close to the SMS in the case in which the TMSs of individual vehicles were used. However, when the 30-second-interval aggregated TMS were used, the volume-distance weighted harmonic mean was outstanding. In this study, a radar detector was installed in the Joongbu expressway to collect the SMS. The trajectory of individual vehicles collected from the detector were used to calculate the SMS, which was compared with the estimates using other methodologies selected in this study. As a result, the volume-distance weighted mean was turned out to be close to the SMS. However, as the congestion becomes severe. the deviation between the two speed becomes bigger.

Analysis of the Effectiveness of Tunnel Traffic Safety Information Service Using RADAR Data Based on Surrogate Safety Measures (레이더 검지기 자료를 활용한 SSM 기반 터널 교통안전정보 제공 서비스 효과분석)

  • Yongju Kim;Jaehyeon Lee;Sungyong Chung;Chungwon Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.73-87
    • /
    • 2023
  • Furnishing traffic safety information can contribute to providing hazard warnings to drivers, thereby avoiding crashes. A smart road lighting platform that instantly recognizes road conditions using various sensors and provides appropriate traffic safety information has therefore been developed. This study analyzes the short-term traffic safety improvement effects of the smart road lighting's tunnel traffic safety information service using surrogate safety measures (SSM). Individual driving behavior was investigated by applying the vehicle trajectory data collected with RADAR in the Anin Avalanche 1 and 2 tunnel sections in Gangneung. Comparing accumulated speeding, speed variation, time-to-collision, and deceleration rate to avoid the crash before and after providing traffic safety information, all SSMs showed significant improvement, indicating that the tunnel traffic safety information service is beneficial in improving traffic safety. Analyzing potential crash risk in the subdivided tunnel and access road sections revealed that providing traffic safety information reduced the probability of traffic accidents in most segments. The results of this study will be valuable for analyzing the short-term quantitative effects of traffic safety information services.

A Hybrid RCS Analysis Code Based on Physical Optics and Geometrical Optics (PO-GO 연계기법을 이용한 RCS 해석코드 개발)

  • Jang, Min-Uk;Myong, Rho-Shin;Jang, In-Mo;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.958-967
    • /
    • 2014
  • A hybrid method based on high-frequency asymptotic optics was developed in order to predict the RCS of flying vehicles for RCS reduction studies. In cavity return, the rays are assumed to bounce from the inlet cavity based on the laws of geometrical optics and to exit the cavity via the aperture. In other parts of a flying vehicle, the physical optics method is applied to compute the back-scattered field from the solid surface. The hybrid method was validated by considering simple models of sphere and sphere with cavity. In addition, RCS analysis of a flying vehicle was conducted using the new hybrid electromagnetic scattering method based on physical optics and geometrical optics theories.

Analysis of Flow and Infrared Signature Characteristics according to UCAV Nozzle Shape (무인전투기 배기구 형상에 따른 유동 및 적외선 신호 특성 분석)

  • Noh, Sooyoung;Bae, Ji-Yeul;Kim, Jihyuk;Nam, Juyeong;Jo, Hana;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • Stealth technology is a technique to avoid detection from detectors such as radar and infrared seekers. In particular, detection by infrared signature is more threatening because infrared missiles detect heat from the aircraft itself. Therefore, infrared stealth technology is essential for ensuring the survival of aircraft and unmanned combat aerial vehicles (UCAV). In this study, we analyzed aerodynamic and infrared stealth performance in relation to UCAV nozzle design. Based on simulation results, a double serpentine nozzle was effective in reducing the infrared signature because it could shield high-temperature components in the engine. In addition, we observed that the infrared signature was reduced at the turning position of the duct located at the rear part of the double serpentine nozzle.

Development of a Fault Detection Algorithm for Multi-Autonomous Driving Perception Sensors Based on FIR Filters (FIR 필터 기반 다중 자율주행 인지 센서 결함 감지 알고리즘 개발)

  • Jae-lee Kim;Man-bok Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.175-189
    • /
    • 2023
  • Fault detection and diagnosis (FDI) algorithms are actively being researched for ensuring the integrity and reliability of environment perception sensors in autonomous vehicles. In this paper, a fault detection algorithm based on a multi-sensor perception system composed of radar, camera, and lidar is proposed to guarantee the safety of an autonomous vehicle's perception system. The algorithm utilizes reference generation filters and residual generation filters based on finite impulse response (FIR) filter estimates. By analyzing the residuals generated from the filtered sensor observations and the estimated state errors of individual objects, the algorithm detects faults in the environment perception sensors. The proposed algorithm was evaluated by comparing its performance with a Kalman filter-based algorithm through numerical simulations in a virtual environment. This research could help to ensure the safety and reliability of autonomous vehicles and to enhance the integrity of their environment perception sensors.

A Study on Evaluation Method of the LKAS Test in Domestic Road Environment (국내도로환경을 고려한 LKAS 시험평가 방법에 관한 연구)

  • Yoon, Pil-Hwan;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.628-637
    • /
    • 2017
  • The automobile industry has developed Advanced Driver Assistance Systems (ADASs) to prevent traffic accidents and reduce the burden for drivers. One example is the Lane Keeping Assistance System (LKAS), which was developed for automotive vehicle systems for safety and better driving. The main system of the LKAS supports the driver while maintaining the vehicle within a lane. LKAS uses a radar sensor and camera sensor to collect information about the vehicle's position in the lane and send commands to the actuator to influence the lateral movement of the vehicle if necessary. Recently, vehicles equipped with LKAS have become commercially available. Test procedures for international LKAS evaluation are being discussed and developed by international committees, such as the International Organization for Standardization and United Nations Economic Commission for Europe. In Korea, an evaluation of LKASs for car safety is being planned by the Korean New Car Assessment Program. Therefore, test procedures should be developed for LKASs that are suitable for the domestic road environment while accommodating international standards. We developed a test scenario for LKASs and propose a formula for obtaining the target relative distance. To validate the methods, a series of experiments were conducted using commercially available vehicles equipped with LKAS.