• 제목/요약/키워드: vehicle plate recognition

검색결과 144건 처리시간 0.028초

특징 추출에 기반한 신경망 시스템을 이용한 차량 번호판 문자인식 (Character Recognition of Vehicle Number Plate Using Feature Based Neural Network)

  • 이현숙;김희승
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.383-385
    • /
    • 2000
  • 차량 번호판 문자영상으로부터 여러 가지 특징 추출 방법을 조합하여 입력특징소를 재구성하고, 신경망을 이용하여 문자를 인식한다. 속도 개선을 위해 특별한 전처리 과정없이 이치화와 크기 정규화만을 수행한 후 그물망 방법과 BLT 방법, 정규화된 투영값 특정 방법을 조합하여 입력특징소를 구성한다. 본 연구에서는 숫자 인식에서 그물망 방법과 BLT 방법을 이용하여 잡음으로 인한 유사 문자의 오인식을 해결하였고, 문자 인식에서는 정규화된 투영값 특징을 이용하여 문자의 유형을 분류한 후 자소를 개별적으로 인식하였다. 이로써 모음 인식 경우에 중요한 역할을 하는 작은 획의 영역에 BLT 방법을 사용함으로 기존 연구에서의 모음 오인식 문제를 해결하였다.

  • PDF

합성곱 신경망 기반의 차량 번호판 인식 시스템 (Convolutional Neural Network based Vehicle License Plate Recognition System)

  • 임성훈;이재흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.749-752
    • /
    • 2018
  • 깊은 신경망 모델을 이용한 차량 번호판 검출과 번호판 문자 인식 시스템을 제안한다. 차량 번호판 인식 시스템은 세 가지 종류의 깊은 신경망 모델로 구성된다. 기존의 영상처리 기반의 차량 번호판 검출과 문자 인식을 전부 신경망으로 대체함으로써 영상의 밝기, 회전, 왜곡 등의 변형에 강인한 성능을 얻을 수 있다. 차량 번호판 검출률은 99.3%, 문자 영역 검출률은 99%, 문자 인식률을 98.5%를 얻었다.

라즈베리파이와 OCR기반의 포터블 차량 번호판 인식기 모듈 개발에 관한 연구 (A Study on Raspberry Pi and OCR-based Vehicle License Plate Recognition Portable Module Development)

  • 권혁호;박성현;임준호;장성원;곽태원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.615-618
    • /
    • 2019
  • 이 모듈은 오픈소스인 Tesseract OCR 및 Open CV 라이브러리와 Raspberry Pi를 사용하여 저렴한 비용으로 구현합니다. 컴팩트한 사이즈로 사람이 직접 들고 움직이면서도 사용이 가능하며 사용자의 니즈에 따라서 한 곳에 위치하여도 사용 가능합니다. Open CV 라이브러리를 사용하여 이미지 이진화, 노이즈 필터링 후에 흑백 이미지를 만들고 윤곽선 검출 알고리즘을 통해서 번호판 영역을 추출하여 Tesseract OCR 엔진을 사용해서 차량 번호판이 추출된 이미지에서 차량 번호를 인식 합니다. 인식된 번호는 Tkinter 와 Python, 데이터베이스를 활용하여 구현된 GUI프로그램을 통해서 유료주차장(선불, 후불) 또는 아파트에서 사용할 수 있는 주차장 관리 서비스를 함께 제공합니다.

차량 번호판 인식을 이용한 증인 확보 블랙박스 (Black-box for Obtaining Witnesses Using Vehicle License Plate Recognition)

  • 문영찬;박재민;고영웅
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.841-843
    • /
    • 2012
  • 본 논문에서는 안드로이드 기반의 태블릿 PC 환경에서 차량사고 발생 시 번호판 인식을 통하여 해당 사건의 증인을 확보 할 수 있는 증인 확보용 블랙박스 시스템을 제안한다. 이 방법은 기존의 블랙박스 기능에 추가적으로 영상에서 추출한 자동차들의 번호판을 인식하여 번호판 정보를 로그데이터로 저장하는 방식을 사용한다. 이로 인해 차량 사고에 대한 증인을 확보할 수 있는 시스템을 제공함으로써 사건에 대한 사용자의 불리한 입장을 완화 시켜줄 수 있는 객관적 데이터를 제공 및 저장하는 것을 목표로 한다.

Development of a parking control system that improves the accuracy and reliability of vehicle entry and exit based on LIDAR sensing detection

  • Park, Jeong-In
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.9-21
    • /
    • 2022
  • 이 논문에서 우리는 제4차 산업혁명의 핵심기술의 하나인 LiDAR 센서를 기반으로 기존 검지 카메라의 검지율을 개선하여 입출차 차량에 대해 100% 검지가능한 시스템을 개발하였다. 현재 운영 중인 주차장은 98% 정도의 차량번호 인식율에만 의존하고 있으므로 입출차 카운트의 불일치, 부정확한 정보 제공 등으로 사전 예약불가, 실시간 주차정보 불일치 등 여러 가지 문제를 안고 있다. 주차현황정보는 정확도 100% 수준으로 관리되어야 하며 이를 위해 우리는 LIDAR를 이용하여 주차장의 입출차 검지 체계를 구축하였다. 주로 자율주행 자동차의 차량 및 사물검지를 위해 필수적으로 사용되고 있는 LIDAR 센서를 응용하여 주차시스템을 개발하는 경우, 검지된 센싱 정보로 차량 입출차 정보의 정확성과 입출차 카운트의 신뢰도를 개선할 수 있다. LIDAR의 분해능은 100%로 보장이 되었고 주차장의 입차(+), 출차(-) 차량의 합계가 0이 되도록 구현할 수 있었다. 우리는 3,000대의 실제 주차장 출입 차량으로 테스트해 본 결과 주차 차량 입출차 정확도를 100%로 결과를 도출하였다.

자동주차조사 시스템 개발 및 활용에 관한 연구 (A Study on Development and Utilization of Automatic Parking Survey System)

  • 이영우;권혁준
    • 대한교통학회지
    • /
    • 제32권5호
    • /
    • pp.452-461
    • /
    • 2014
  • 기존 주차조사는 광범위한 조사지역을 대상으로 조사원이 직접 주차차량의 번호판을 확인하는 방식으로 기동성의 저하, 조사와 입력의 이원화로 인한 입력오류, 많은 조사시간과 비용이 소요되는 단점을 가지고 있었다. 따라서 본 연구에서는 기존 조사원에 의한 주차조사의 단점을 극복하기 위해 최근 상용화된 고성능 영상분석장비, 위성측량장비, 적외선 조명 등을 이용하여 자동주차조사를 위한 방법에 관한 연구를 수행하였으며 본 연구결과 개발된 자동주차조사 방법을 이용하여 조사된 데이터를 수정, 저장, 분석 및 출력이 가능한 주차분석 소프트웨어를 개발하였다. 장비를 이용한 자동주차조사 시 조사차량의 주행속도, 영상분석장비의 촬영각도, 주차차량 상호간 차간간격, 조사차량과 주차차량의 이격거리 등에 의해 조사의 정밀도가 영향을 받는 것으로 나타나 장비를 이용한 자동주차조사의 정확도를 향상시키기 위해 실험을 통해 각 요소별 최적조합을 도출하였다. 또한 기존 주차조사 데이터가 체계적으로 저장, 관리되지 못하고 있는 문제점을 극복하고 주자정책 수립을 지원하기 위한 주차분석을 지원하기 위한 주차분석 소프트웨어를 개발하였다.

GUI기반 산업용 디지털 기기의 측정값 인식 시스템 (A GUI-based the Recognition System for Measured Values of Digital Instrument in the Industrial Site)

  • 전민식;고봉진
    • 한국항행학회논문지
    • /
    • 제20권5호
    • /
    • pp.496-502
    • /
    • 2016
  • 본 논문에서는 영상처리를 통해 GUI를 기반으로 산업용 디지털 기기의 측정값을 인식하고 기록하는 시스템을 제안하고 구현하였다. 제안한 시스템은 기존의 차량번호판 인식과 달리 산업용 측정기의 LCD화면에 표시되는 값은 디지털 숫자로 표시하고 있어 소수점과 마이너스 표시, LCD보호유리의 반사광등의 여러 가지 장애요인을 고려하였다. LCD화면에 표시된 숫자를 인식하기 위해 블롭 레이블링 (blob-labeling)기법을 사용하였으며, 인식한 숫자 이미지는 템플릿 매칭(template matching)을 통해 숫자가 무엇인지 판별하여, 인식한 측정값을 측정시간과 함께 저장장치에 기록하였다. 본 논문에서 제안한 시스템은 산업현장에서 제품의 내외경이나 높이를 측정하고 기록할 때 수기로 작성하는 번거로움을 줄이고, 수기로 작성 시 잘못 기입하는 경우를 방지함으로써 생산 공정 과정에서 오류가 없는 효율적인 공정관리가 가능하게 하였다.

문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출 (Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images)

  • 박종천;황동국;이우람;전병민
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1167-1174
    • /
    • 2006
  • 자연이미지로부터 텍스트 영역 추출은 자동차 번호판 인식 등과 같은 많은 응용프로그램에서 유용하다. 따라서 본 논문은 문자-에지 맵의 패턴 히스토그램을 이용한 텍스트 영역을 추출하는 방법을 제안한다. 16종류의 에지맵을 생성하고, 이것을 조합하여 문자 특징을 갖는 8종류 문자-에지 맵 특징을 추출한다. 문자-에지 맵의 특징을 이용하여 텍스트 후보 영역을 추출하고, 텍스트 후보 영역에 대한 검증은 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하였다. 실험결과 제안한 방법은 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지로부터 텍스트 영역을 효과적으로 추출하였다.

  • PDF

드론 영상 종합정보처리 및 분석용 시스템 개발 (Integrated Video Analytics for Drone Captured Video)

  • 임송원;조성만;박구만
    • 방송공학회논문지
    • /
    • 제24권2호
    • /
    • pp.243-250
    • /
    • 2019
  • 본 논문에서는 다양한 재난치안안전 임무 상황에서 적용할 수 있는 드론 영상 종합정보 처리 및 분석용 시스템을 제안한다. 제안하는 시스템은 드론에서 획득한 영상을 서버에 저장하고, 다양한 시나리오에 따른 영상 처리 및 분석을 수행한다. 각 임무에 따라 필요한 기능은 딥러닝을 활용하여 드론으로부터 확보하는 영상에서 영상분석 시스템을 구성한다. 실험 영상을 통해 교통량 측정, 용의자 및 차량 추적, 조난자 식별 및 해상 초계 임무에 적용할 수 있음을 확인했다. 드론 운용자가 임무에 따른 필요 기능을 선택하고 신속하게 대처할 수 있는 시스템을 구현하였다.

딥러닝 기반 자동차 모델 및 번호판 인식 시스템 구현 (Implementation of Deep Learning-Based Vehicle Model and License Plate Recognition System)

  • 함경윤;강길남;이장현;이정우;박동훈;류명춘
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.465-466
    • /
    • 2022
  • 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출 모델인 YOLOv4를 활용하여 차량의 모델과 번호판인식 시스템을 제안한다. 본 논문에서 제안하는 시스템은 실시간 영상처리기술인 YOLOv4를 사용하여 차량모델 인식과 번호판 영역 검출을 하고, CNN(Convolutional Neural Network)알고리즘을 이용하여 번호판의 글자와 숫자를 인식한다. 이러한 방법을 이용한다면 카메라 1대로 차량의 모델 인식과 번호판 인식이 가능하다. 차량모델 인식과 번호판 영역 검출에는 실제 데이터를 사용하였으며, 차량 번호판 문자 인식의 경우 실제 데이터와 가상 데이터를 사용하였다. 차량 모델 인식 정확도는 92.3%, 번호판 검출 98.9%, 번호판 문자 인식 94.2%를 기록하였다.

  • PDF