• Title/Summary/Keyword: vehicle license plate recognition

Search Result 119, Processing Time 0.026 seconds

Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images (문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출)

  • Park, Jong-Cheon;Hwang, Dong-Guk;Lee, Woo-Ram;Jun, Byoung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1167-1174
    • /
    • 2006
  • Text region detection from a natural scene is useful in many applications such as vehicle license plate recognition. Therefore, in this paper, we propose a text region extraction method using pattern histogram of character-edge maps. We create 16 kinds of edge maps from the extracted edges and then, we create the 8 kinds of edge maps which compound 16 kinds of edge maps, and have a character feature. We extract a candidate of text regions using the 8 kinds of character-edge maps. The verification about candidate of text region used pattern histogram of character-edge maps and structural features of text region. Experimental results show that the proposed method extracts a text regions composed of complex background, various font sizes and font colors effectively.

  • PDF

Integrated Video Analytics for Drone Captured Video (드론 영상 종합정보처리 및 분석용 시스템 개발)

  • Lim, SongWon;Cho, SungMan;Park, GooMan
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.243-250
    • /
    • 2019
  • In this paper, we propose a system for processing and analyzing drone image information which can be applied variously in disasters-security situation. The proposed system stores the images acquired from the drones in the server, and performs image processing and analysis according to various scenarios. According to each mission, deep-learning method is used to construct an image analysis system in the images acquired by the drone. Experiments confirm that it can be applied to traffic volume measurement, suspect and vehicle tracking, survivor identification and maritime missions.

Implementation of Deep Learning-Based Vehicle Model and License Plate Recognition System (딥러닝 기반 자동차 모델 및 번호판 인식 시스템 구현)

  • Ham, Kyoung-Youn;Kang, Gil-Nam;Lee, Jang-Hyeon;Lee, Jung-Woo;Park, Dong-Hoon;Ryoo, Myung-Chun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.465-466
    • /
    • 2022
  • 본 논문에서는 딥러닝 영상인식 기술을 활용한 객체검출 모델인 YOLOv4를 활용하여 차량의 모델과 번호판인식 시스템을 제안한다. 본 논문에서 제안하는 시스템은 실시간 영상처리기술인 YOLOv4를 사용하여 차량모델 인식과 번호판 영역 검출을 하고, CNN(Convolutional Neural Network)알고리즘을 이용하여 번호판의 글자와 숫자를 인식한다. 이러한 방법을 이용한다면 카메라 1대로 차량의 모델 인식과 번호판 인식이 가능하다. 차량모델 인식과 번호판 영역 검출에는 실제 데이터를 사용하였으며, 차량 번호판 문자 인식의 경우 실제 데이터와 가상 데이터를 사용하였다. 차량 모델 인식 정확도는 92.3%, 번호판 검출 98.9%, 번호판 문자 인식 94.2%를 기록하였다.

  • PDF

A GUI-based the Recognition System for Measured Values of Digital Instrument in the Industrial Site (GUI기반 산업용 디지털 기기의 측정값 인식 시스템)

  • Jeon, Min-sik;Ko, Bong-jin
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.496-502
    • /
    • 2016
  • In this paper, we proposed and implemented a GUI-based system to recognize and record measured values of digital instruments in the industrial site through image processing. Unlike the existing vehicle license plate recognition system, the measured values of the measuring instrument are displayed on the LCD screen as digital numbers. So, the proposed system considers the decimal point, a negative sign, light reflected by LCD protective glass, and various disturbance factors. We used blob-labeling technique to recognize the numbers displayed on the LCD screen, the recognized number images were determined as certain numbers through the template matching, and recognized values were recorded in the storage device with measurement time. Therefore, the proposed system in this paper would reduce the burden of writing when recording the measured values of the inside/outside diameter or height of the product in the industrial site, so effective and errorless process management in production process is possible by preventing errors in recording measurements when written by hand.

Development of a parking control system that improves the accuracy and reliability of vehicle entry and exit based on LIDAR sensing detection

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.9-21
    • /
    • 2022
  • In this paper, we developed a 100% detection system for entering and leaving vehicles by improving the detection rate of existing detection cameras based on the LiDAR sensor, which is one of the core technologies of the 4th industrial revolution. Since the currently operating parking lot depends only on the recognition rate of the license plate number of about 98%, there are various problems such as inconsistency in the entry/exit count, inability to make a reservation in advance due to inaccurate information provision, and inconsistency in real-time parking information. Parking status information should be managed with 100% accuracy, and for this, we built a parking lot entrance/exit detection system using LIDAR. When a parking system is developed by applying the LIDAR sensor, which is mainly used to detect vehicles and objects in autonomous vehicles, it is possible to improve the accuracy of vehicle entry/exit information and the reliability of the entry/exit count with the detected sensing information. The resolution of LIDAR was guaranteed to be 100%, and it was possible to implement so that the sum of entering (+) and exiting (-) vehicles in the parking lot was 0. As a result of testing with 3,000 actual parking lot entrances and exits, the accuracy of entering and exiting parking vehicles was 100%.

Measurement of Travel Time Using Sequence Pattern of Vehicles (차종 시퀀스 패턴을 이용한 구간통행시간 계측)

  • Lim, Joong-Seon;Choi, Gyung-Hyun;Oh, Kyu-Sam;Park, Jong-Hun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.53-63
    • /
    • 2008
  • In this paper, we propose the regional travel time measurement algorithm using the sequence pattern matching to the type of vehicles between the origin of the region and the end of the region, that could be able to overcome the limit of conventional method such as Probe Car Method or AVI Method by License Plate Recognition. This algorithm recognizes the vehicles as a sequence group with a definite length, and measures the regional travel time by searching the sequence of the origin which is the most highly similar to the sequence of the end. According to the assumption of similarity cost function, there are proposed three types of algorithm, and it will be able to estimate the average travel time that is the most adequate to the information providing period by eliminating the abnormal value caused by inflow and outflow of vehicles. In the result of computer simulation by the length of region, the number of passing cars, the length of sequence, and the average maximum error rate are measured within 3.46%, which means that this algorithm is verified for its superior performance.

  • PDF

ONNX-based Runtime Performance Analysis: YOLO and ResNet (ONNX 기반 런타임 성능 분석: YOLO와 ResNet)

  • Jeong-Hyeon Kim;Da-Eun Lee;Su-Been Choi;Kyung-Koo Jun
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.89-100
    • /
    • 2024
  • In the field of computer vision, models such as You Look Only Once (YOLO) and ResNet are widely used due to their real-time performance and high accuracy. However, to apply these models in real-world environments, factors such as runtime compatibility, memory usage, computing resources, and real-time conditions must be considered. This study compares the characteristics of three deep model runtimes: ONNX Runtime, TensorRT, and OpenCV DNN, and analyzes their performance on two models. The aim of this paper is to provide criteria for runtime selection for practical applications. The experiments compare runtimes based on the evaluation metrics of time, memory usage, and accuracy for vehicle license plate recognition and classification tasks. The experimental results show that ONNX Runtime excels in complex object detection performance, OpenCV DNN is suitable for environments with limited memory, and TensorRT offers superior execution speed for complex models.

Escape Route Prediction and Tracking System using Artificial Intelligence (인공지능을 활용한 도주경로 예측 및 추적 시스템)

  • Yang, Bum-suk;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.225-227
    • /
    • 2022
  • Now In Seoul, about 75,000 CCTVs are installed in 25 district offices. Each ward office in Seoul has built a control center for CCTV control and is building information such as people, vehicle types, license plate recognition and color classification into big data through 24-hour artificial intelligence intelligent image analysis. Seoul Metropolitan Government has signed MOUs with the Ministry of Land, Infrastructure and Transport, the National Police Agency, the Fire Service, the Ministry of Justice, and the military base to enable rapid response to emergency/emergency situations. In other words, we are building a smart city that is safe and can prevent disasters by providing CCTV images of each ward office. In this paper, the CCTV image is designed to extract the characteristics of the vehicle and personnel when an incident occurs through artificial intelligence, and based on this, predict the escape route and enable continuous tracking. It is designed so that the AI automatically selects and displays the CCTV image of the route. It is designed to expand the smart city integration platform by providing image information and extracted information to the adjacent ward office when the escape route of a person or vehicle related to an incident is expected to an area other than the relevant jurisdiction. This paper will contribute as basic data to the development of smart city integrated platform research.

  • PDF

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.