• Title/Summary/Keyword: vehicle door design

Search Result 56, Processing Time 0.039 seconds

Study on the Optimization Design and Impact Experiment of Side Door for Impact Beam in the Vehicle Side Door (차량 측면도어 임팩트 빔의 최적설계 및 측면도어 충돌실험에 관한 연구)

  • Kim, Jae Yeol;Choi, Soon Ho
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 2015
  • The impact beam, a beam-shaped reinforcement installed horizontally between the inside and outside panels of car doors, is gaining importance as a solution to meet the regulations on side collision of vehicles. In order to minimize pelvis injury which is the biggest injury happening to the driver and passengers when a vehicle is subject to side collision, energy absorption at the door impact beam should be maximized. For the inner panel, the thrust into the inside of the vehicle must be minimized. The impact beam should be as light as possible so that the extent of pelvis injury to the driver and passenger during side collision of the vehicle is minimal. To achieve this, the weight of the impact beam, has to be optimized. In this study, we perform a design analysis with a goal to reduce the weight of the current impact design by 30% while ensuring stability, reliability, and comparison data of the impact beam for mass production. We conduct three-point bending stress experiments on conventional impact beams and analyze the results. In addition, we use a side-door collision test apparatus to test the performance of beams made of three (different materials: steel, aluminum, and composite beams).

The Optimal Design for Vehicle Door Trim Armrest Regard to Side Impact Test (측면충돌을 고려한 자동차 도어트림 팔걸이부 최적 설계)

  • Choi, Hae-Seok;Jang, Ik-Kun;Koo, Ja-Keum;Kim, Sun-Min;Kim, Han-Kyoung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.882-886
    • /
    • 2004
  • A nation have the regulation for a vehicle safety and interested in the side impact of a vehicle. But we spend a lot of money and time for the side impact test. So we must design a vehicle parts regard to the side impact test. This paper describes a new test method for side impact test. We used DFSS(Design For Six Sigma) process for design of door trim armrest. We searched the door trim armrest control factor and made the experiment plan. We researched the optimal design factor and improved the abdomen injury value of the human dummy.

  • PDF

Development of Vehicle Door Impact Beam by Hot Stamping (핫스탬핑에 의한 자동차 도어 임팩트빔의 개발)

  • Yum, Young-Jin;Kim, Jong-Gook;Lee, Hyun-Woo;Hwang, Jung-Bok;Kim, Sun-Ung;Kim, Won-Hyuck;Yoo, Seung-Jo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.7-12
    • /
    • 2008
  • A hot stamping technology of vehicle door impact beam made of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technology has been implemented to increase the strength of vehicle body parts and to reduce not only the weight of door impact beam but also the number of work processes. Mechanical tests were performed to obtain material properties of hot-stamped specimen and those were used as input data in stamping and structural simulation for optimal design of door impact beam. Strength of hot-stamped door impact beam increased to the value 102% higher than that of conventional pipe-shaped door impact beam and structural simulation showed that hot-stamped door impact beam achieved 28% weight reduction.

  • PDF

A Research on Predicting Dynamic Behavior of Door Locking System for Side Impact Safety

  • Kwak, K.T.;Choi, D.W.;Seo, S.W.
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • The main purpose of this research is to predict dynamic behavior of door locking system for side impact safety and the design process to avoid door opening is introduced. The equations of motion that represent the system are obtained from the energy equation. From them, the motion of door handle is predicted by using Runge-Kutta $4^{th}$ order method and the simulation result is compared with the real crash data. Also, the design guide to define the properties of door locking system from the standpoint of avoiding door opening phenomenon is introduced.

Analysis of Door Effort using 2D Model (2차원 모델을 이용한 도어 개폐력 해석)

  • 김창원;강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.131-137
    • /
    • 2003
  • Proper door effort, required force to open or close a vehicle door, is an essential door design factor for the safety of passengers and pedestrians. Section shape of the door checker arm is the most influential design parameter for achieving a door effort design target. In this research. an analysis procedure to predict door effort using a simplified plane strain finite element model wes investigated for two passenger cars, for which mechanism of checker systems were: different. The variation of checker arm force to be required during moving on arm in opening and closing direction was estimated through analysis, and the result was transformed to the door effort with respect to door opening angle by considering door characteristics. Also, the self·closing force due to door weight was theoretically calculated and added to the door effort from checker arm force. Finally the estimated results of door effort were compared with test results.

The Survey of the Interior facilities and Passenger side door systems for driverless rail vehicle (무인운전 열차의 실내설비 및 승객 출입문 설계에 대한 고찰)

  • Park, Seong-Ho;Park, Jae-Hong;Yeom, Gyu-Hak
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.135-142
    • /
    • 2007
  • The service running of driverless rail vehicle has been required by various social and commercial issue. Currently, the new domestic line between Bu-san and Gim-hae is plan to be provided the LRV(Light Rail Vehicle) with driverless operation firstly in domestic service. These driverless vehicle have some major properties to make it lower the operating and maintenance cost, however on the other side, it unavoidably raise some potential hazard to make it lower the passenger safety because it is hard to take care immediately in emergency state during vehicle running. Therefore it is highly requested that we should consider various conditions at design stage to manufacture and operate the safest vehicle. Therefore, in this paper, we will survey the design concept of vehicle interior facilities based on the previous experience, (1) The difference of interior facilities between normal and driverless vehicle, (2) design and operational concept of passenger side door function to find out best application for domestic line driverless vehicle.

  • PDF

An Experimental Study on Cracks due to Changes in Length of the Vehicle Door Latch Hieroglyphic Punch Stroke (차량용 도어 래치의 상형 펀치 길이 변화에 따른 크랙 발생에 관한 실험적 연구)

  • Hong, Cheong-Min;Jung, Hyun-Suk;Lee, Ha-Sung;Kim, Sun-Yong
    • Design & Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.16-19
    • /
    • 2015
  • In this paper, The experimental study on the crack during press forming of the door latch assembly for a vehicle door is performed. Length to be inserted into the conventional mold upper die punch is 20 mm, wherein the cracks are generated on the product surface and causes a secondary quality problem. In this study, the length to be inserted in the mold upper die punch 0 mm, 10 mm, 20 mm, which was changed to perform the experiment. Through the experiment, the length inserted into the mold can be seen that the upper die punch of the press forming conditions optimized when the 0 mm.

  • PDF

Set-Based Multi-objective Design Optimization at the Early Phase of Design (The Third Report) : Application to Environment-Conscious Automotive Side-Door Assembly (초기 설계단계에서의 셋 베이스 다목적 설계 최적화(제3보) : 환경문제를 고려한 자동차 사이드 도어 어셈블리에의 적용)

  • Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.138-144
    • /
    • 2011
  • The design flexibility and robustness have become key factors to handle various sources of uncertainties at the early phase of design. Even though designers are uncertain about which single values to specify, they usually have a preference for certain values over others. In the first and second reports of a four-part paper, a set-based design approach has been proposed for achieving design flexibility and robustness while capturing designer's preference, and its effectiveness has been illustrated with a simple vehicle side-door impact beam design problem. This report presents the applicability of the proposed design approach to the large-scale multi-objective design optimization with a successful implementation of real vehicle side-door structure design.

The Optimization of the Press-type Door Hinge of the Full-sized Car (대형차량의 프레스타입 도어힌지 적용을 위한 최적화 연구)

  • Yang, Ji-Hyuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.48-55
    • /
    • 2010
  • The Door hinge is a very important part for door sagging performance of a vehicle. It is divided into two classes as a forge- and press-type according to a manufacturing technique. The press-type door hinge is cheap, but shows low strength. To apply the press-type door hinge to a fullsized car with satisfactory door sagging performance, we optimized the design parameters of the door hinge using the DFSS method. As a result, the effective design parameters of the press-type door hinge with good door sagging performance were obtained.