• Title/Summary/Keyword: vehicle distance

Search Result 1,212, Processing Time 0.025 seconds

A Study on Proposition of The Assisting Mechanism for Wheelchair Transfer for Car (차량용 휠체어 이송을 위한 보조메커니즘의 제안에 관한 연구)

  • Lim, K.;Kim, Y.S.;Yang, S.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.4
    • /
    • pp.251-258
    • /
    • 2014
  • A wheelchair is a typical mobility aid for the physically disabled or the old and the weak, and is the most commonly used rehabilitation aid. In general, most of users of manual wheelchair have difficulty though vocational rehabilitation and independent living is possible. The reason is that long-distance movement is always accompanied with wheelchair transfer problem because a wheelchair is used as direct means of transport. Hence, the wheelchair transfer problem should be first solved in order that a wheelchair user can independently live. Therefore, this study examined and analyzed the domestic and overseas launched products and patented technologies of wheelchair transfer system for vehicle, and proposed a wheelchair transfer mechanism of a new system for vehicle. This study proposed a wheelchair transfer mechanism for vehicle in order to remove the disadvantage of wheelchair transfer system for vehicle to support the conventional wheelchair user's movement, and in order to conform with the structure of domestic welfare vehicle for the disabled. Because a difference between storage space installed in the roof of vehicle and storage space for leisure, which is generally utilized, gets to disappear by applying this proposed mechanism, popularity among users can be increased. And storage space that has become smaller like this will be capable of decreasing the disadvantage of air resistance in traveling. Besides, because of getting to conform with the structure of welfare vehicle, restrictions on the application range will disappear from small sedan to SUV. Therefore, users can have more choices.

  • PDF

Study on Vehicle Routing Problem with Minimum Delivery Completion Time (특송소화물 배송완료시간 최소화를 위한 차량경로문제 연구)

  • Lee, Sang-Heon
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.107-117
    • /
    • 2004
  • The growing demand for customer-response, made-to-order manufacturing and satisfactory delivery are stimulating the importance of commercial fleet management problem. Moreover, the rapid transformation to the customer-oriented multi-frequency, relatively small fleet, such as home delivery and Perishable goods, requiring prompt delivery and advanced real-time operation of vehicle fleets. In this paper we consider the vehicle routing problem(VRP) to minimize delivery completion time which is equal to the time that last customer wait for the vehicle in fleet operation. The mathematical formulation is different from those for the classical VRP which is minimizing cost/distance/time by running vehicles in manager's point of view. The key aspect of this model is not considering the return time from the last customer to depot in every vehicle path. Thereby, the vehicle dispatcher can afford to dynamically respond to customer demand and vehicle availability. The customer's position concerned with minimizing waiting time that may be applied for the delivery of product required freshness or delivery time. Extensive experiments are carried out to compare the performance of minimizing delivery completion time by using the ILOG Solver which has the advantage of solving quickly an interim solution very near an optimal solution. The experimental results show that the suggested model can easily find near optimal solution in a reasonable computational time under the various combination of customers and vehicles.

Path Tracking Control of 6X6 Skid Steering Unmanned Ground Vehicle for Real Time Traversability (실시간 주행 안정성 분석을 위한 6X6 스키드 조향 무인 자율 주행 차량의 경로 추종 제어)

  • Hong, Hyosung;Han, Jong-Boo;Song, Hajun;Jung, Samuel;Kim, Sung-Soo;Yoo, Wan Suk;Won, Mooncheol;Joo, Sanghyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.599-605
    • /
    • 2017
  • For an unmanned vehicle to be driven on the off-road terrain, it is necessary to consider the vehicle's stability. This paper suggests a path tracking controller for simulation of real-time vehicle stability analysis. The path tracking controller uses the preview distance to track the given trajectory. The disturbance moment is estimated using the yaw moment observer, and this information is used for compensation in the yaw moment control. On a curved path, the vehicle's desired velocity is determined from the curvature of the path. Because the vehicle is equipped with six independent motor driven wheels, the driving torques are distributed on all the wheels. The effectiveness of the path tracking controller is verified using ADAMS/MATLAB co-simulation.

Vehicle Detection using Feature Points with Directional Features (방향성 특징을 가지는 특징 점에 의한 차량 검출)

  • Choi Dong-Hyuk;Kim Byoung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.11-18
    • /
    • 2005
  • To detect vehicles in image, first the image is transformed with the steerable pyramid which has independent directions and levels. Feature vectors are the collection of filter responses at different scales of a steerable image pyramid. For the detection of vehicles in image, feature vectors in feature points of the vehicle image is used. First the feature points are selected with the grid points in vehicle image that are evenly spaced, and second, the feature points are comer points which m selected by human, and last the feature points are corner Points which are selected in grid points. Next the feature vectors of the model vehicle image we compared the patch of the test images, and if the distance of the model and the patch of the test images is lower than the predefined threshold, the input patch is decided to a vehicle. In experiment, the total 11,191 vehicle images are captured at day(10,576) and night(624) in the two local roads. And the $92.0\%$ at day and $87.3\%$ at night detection rate is achieved.

Analysis of Rain Impacts on Freeway Trip Characteristics (강우와 고속도로 통행특성의 관계 연구)

  • Baek, Seung-Kirl;Kim, Bum-Jin;Lim, Yong-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.3
    • /
    • pp.119-128
    • /
    • 2008
  • Weather like rain, strong wind or snowfall may make the road condition deteriorated and sometimes induce traffic accidents, which lead to severe traffic congestion, thereby travelers may change their destinations elsewhere. Although origin-destination trip information is required to analyze transportation planning in urban area, there are little researches on the relationship between weather condition and travel patterns. This paper investigates the characteristics of travel patterns on expressway in rainy days of 2006. We compare the normal travel patterns with those of rainy days by the travel distance for each vehicle type. Results show that traffic volume and travel distance have been reduced in rainy days as we expect, and also show different travel patterns for weekday and weekend.

Algorithm on Detection and Measurement for Proximity Object based on the LiDAR Sensor (LiDAR 센서기반 근접물체 탐지계측 알고리즘)

  • Jeong, Jong-teak;Choi, Jo-cheon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.192-197
    • /
    • 2020
  • Recently, the technologies related to autonomous drive has studying the goal for safe operation and prevent accidents of vehicles. There is radar and camera technologies has used to detect obstacles in these autonomous vehicle research. Now a day, the method for using LiDAR sensor has considering to detect nearby objects and accurately measure the separation distance in the autonomous navigation. It is calculates the distance by recognizing the time differences between the reflected beams and it allows precise distance measurements. But it also has the disadvantage that the recognition rate of object in the atmospheric environment can be reduced. In this paper, point cloud data by triangular functions and Line Regression model are used to implement measurement algorithm, that has improved detecting objects in real time and reduce the error of measuring separation distances based on improved reliability of raw data from LiDAR sensor. It has verified that the range of object detection errors can be improved by using the Python imaging library.

Reliability-Based Design of Sight Distance, a Revisit (신뢰성을 고려한 도로 시거 설계의 제고)

  • Lee, Seul-Gi;Lee, Yong-Jae;Kim, Sang-Gi
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.1 s.87
    • /
    • pp.121-131
    • /
    • 2006
  • Considering characteristics of drivers and vehicles with proper and reliable ways in highway design Procedures can ensure high level of highway safety. However, it is almost impossible to take into account all factors of drivers and vehicles influencing on the highway safety because of their uncertain and random nature. To detour the dead-end, the nature are usually assumed as simple homogeneous and deterministic one. Although the restricted assumption makes the system simple, it can produce serious problems due to lack of considering variability in the system. This paper develops a reliability-based method for determining stopping sight distance(SSD) and intersection sight distance (ISD), which are crucial elements in highway alignment design. In the study, Hasofer-Lind method is adopted. which is a well-known first-order second moment reliability method (AFOSM) The results in this study show that if mean, variance, and distribution of a particular driver-vehicle parameter are known, more reliable sight distances can be applied in highway design procedures because we can reflect uncertainties and randomness. Thus, the Probabilistic method could be adopted in designing the sight distance(s) with the desired reliability level.

Weighted Optimal Location of Mail Distribution Center Using GOSST (GOSST를 이용한우편물 교환센터의 가중치 반영 최적 위치의 선정)

  • Kim, In-Bum;Kim, Joon-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.11
    • /
    • pp.7-13
    • /
    • 2010
  • For swiftness and economic feasibility of parcel delivery, optimal location of mail exchanging centers considering not only section delivery distance but also some weights like the number of delivery vehicles are necessary. In this paper, a mechanism with section delivery distance and vehicle number for locating of mail distribution centers which connect some mail centers of major cities in Republic Korea by applying GOSST theory is proposed. This mechanism for locating mail exchange centers can make the total delivery distance of postal matters less than not only present method which assigns Daejun as mail exchange center, but also Steiner tree method which does not consider weights like number of delivery vehicles. The mechanism is good for protecting the environment as well as rapid and economic delivery. In experiment, the proposed mechanism could curtail total delivery distance by 2.52 percentages compared with Steiner tree method and by 6.66 percentages compared with present method. The mechanism may be used in electric power transmission routing, distribution line topology design, power relay station locating where various voltages and other weights should be considered.

Driving Behavior Characteristics under Red Right Camera Enforcement at Signalized Intersections (신호교차로에서 무인교통단속 규제에 따른 주행 특성)

  • Han, Myungjoo;Lee, Soongbong;Kim, Hyeweon;Lee, YoungIhn;Kim, Sangok
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.63-73
    • /
    • 2016
  • PURPOSES : The objective of this study was to analyze variations in the vehicle driving behavior characteristics on signalized intersections according to the use of traffic enforcement camera (red light camera). METHODS : In order to analyze the driving behavior characteristics on signalized intersections when red light camera are installed, the target sites for investigation were selected depending on whether the red light camera is installed and accident rates increased after the installation. In particular, to analyze the characteristics of dilemma zones in signalized intersections, approach speed and deceleration speed of 3 type vehicles (passing vehicles during a yellow light, stopping at a yellow light, passing vehicles during a green light) were examined. Based on these data, the starting point, ending point, and distance of the dilemma zones were calculated. Also, the locations of increased traffic accidents and decreased accidents after the installation of the equipment were distinguished when analyzing the traffic accident characteristics. RESULTS : Analysis results revealed that there was a tendency for the dilemma zone distance to decrease after the installation of equipment(red light camera) in most sites. This tendency was found to be due to the decrease in the approaching speed of vehicles at intersections after the installation of equipment, resulting in the starting and ending points of dilemma zone to become closer to the stop line. Moreover, analysis showed that the number of traffic accidents decreased for most intersections after the installation of equipment and safety of the intersections increased somewhat. CONCLUSIONS : In general, installation of equipment(red light camera) caused the intersections approaching speed and dilemma zone distance to decrease. Decision-making is difficult for drivers in the dilemma zone, so the decrease in the dilemma zone distance implies an improvement in traffic safety. Furthermore, the number of accidents within intersections significantly decreased after the equipment was installed, leading to the conclusion that installation of the equipment affected the decrease in traffic accidents.

A Study about the interactions of vessels running parallely in proximity to one another and safe conducting of them in restricted waterways (제한수역에서 근접 항해하는 선박의 상호작용과 안전항해거리에 관한 연구)

  • Lee Chun-Ki
    • Journal of Navigation and Port Research
    • /
    • v.29 no.8 s.104
    • /
    • pp.647-652
    • /
    • 2005
  • When a vessel passes near a channel boundary, the boundary creates forces and moments acting on the vessel. With the same reason passing of two vessels closely gives same effects to each other. The principal difference between the above two cases is that the channel boundary is long and constant shape compared to those of vessels. The interaction forces and moments between two vessels could be assumed to be functions of the longitudinal distance $chi_0$, transverse distance $y_0$ and speeds of the two vessels. Passage of one vessel close to another is important operationally from the viewpoint of replenishment at sea, avoidance of collisions and passage of two vessels in restricted channels. The authors studied the interactions between two vessels running closely and calculated safe conducting distances according to separated distances and speeds of the two vessels.