• Title/Summary/Keyword: vehicle distance

Search Result 1,212, Processing Time 0.037 seconds

Random Backoff Scheme of Emergency Warning Message for Vehicle-to-Vehicle Communications (차량 간 통신에서 충돌을 완화하기 위한 랜덤 백오프 방안)

  • Byun, Jae-Uk;Kwon, Sung-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3B
    • /
    • pp.165-173
    • /
    • 2012
  • In this paper, we propose a random backoff scheme for Emergency Warning Messages (EWMs) in the vehicle-to-vehicle environment. The EWMs are disseminated from a vehicle that detects an emergency situation to other vehicles in a multi-hop fashion. Since the vehicle-to-vehicle communication based on IEEE 802.11 adapts CSMA/CA, the density of vehicles increase the probability of collisions between transmissions. Moreover, in the presence of background traffic, the EWM should have a higher priority than that of other messages in neighboring vehicles. To that end, we propose the Distant-Dependent Adaptive Backoff (DDAB) scheme, which set a different contention window for random backoff depending on the distance from the sender to the receiver. In the case when a vehicle is expected to located in the outskirts of the communication boundary, the proposed scheme makes the contention window size small in order to compete the background traffic transmission. Otherwise the contention window is set to a large number to reduce the collision possibility among the EWM transmissions. Via simulations, we show that the proposed scheme performs better than the previous schemes for EWM.

Vehicle-Driving-Load-Adaptive Control of Intelligent Vehicle (차량 주행부하 추정기법을 이용한 지능화 차량의 적응제어)

  • 이세진;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.115-121
    • /
    • 2001
  • A driving load estimation method for intelligent cruise control(ICC) vehicles has been proposed in this paper. Vehicle driving load is one of the most important factors of perturbations in vehicle control and can affect the control performance critically. The effect of the control with driving load estimation on vehicle-to-vehicle distance control has been presented and investigated via computer simulations and vehicle tests. The results show that vehicle-driving-load-adaptive control can provide an ICC system with a good acceleration tracking performance. In addition, the results show that driving load estimation can compensate not only the variation of driving load but also the modeling errors.

  • PDF

A Path Tracking Control Algorithm for Autonomous Vehicles (자율 주행차량의 경로추종 제어 알고리즘)

  • 안정우;박동진;권태종;한창수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.121-128
    • /
    • 2000
  • In this paper, the control algorithm fur an autonomous vehicle is studied and applied to an actual 2 wheel-driven vehicle system. In order to control a nonholonomic system, the kinematic model for an autonomous vehicle is constructed by relative velocity relationship about the virtual point at distance from the vehicle's frame. And the optimal controller that based on the kinematic model is operated on purpose to track a reference vehicle's path. The actual system is designed with named 'HYAVI' and the system controller is applied. Because all the results of simulation don't satisfy the driving conditions of HYAVI, a reformed control algorithm that satisfies an actual autonomous vehicle is applied at HYAVI. At the results of actual experiments, the path tracking works very well by the reformed control algorithm. An autonomous vehicle that applied this control algorithm can be easily used for a path generation algorithm.

  • PDF

A Vehicle Speed Detector Using AMR Sensors (AMR 센서를 이용한 차량 속도 검지기)

  • Kang, Moon-Ho;Park, Yoon-Chang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1398-1404
    • /
    • 2009
  • This paper proposes a vehicle speed detector with anisotropic magnetoresistive (AMR) sensors and addresses experimental results to show the performance of the detector. The detector consists of two AMR sensors and mechanical and electronic apparatuses. The AMR sensor senses disturbance of the earth magnetic field caused by a vehicle moving over the sensor and then produces an output indicative of the moving vehicle. In this paper, vehicle speeds are calculated by using two AMR sensors built on a board. The speed of a vehicle is calculated by dividing the known distance between the two sensors with the time difference between two output signals from each sensor, captured sequentially while the vehicle is driving over the sensors. Some field tests have been carried to show the performance of the proposed detector and its usefulness.

Development of an Intelligent Autonomous Control Algorithm and Test Vehicle Performance Verification (지능형 자율주행 제어 알고리즘 개발 및 시험차량 성능평가)

  • Kim, Won-Gun;Yi, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.861-866
    • /
    • 2007
  • This paper presents development of a vehicle lateral and longitudinal control for autonomous driving control and test results obtained using an electric vehicle. Sliding control theory has been used to develop a vehicle speed and distance control algorithm. The longitudinal control algorithm that maintains safety and comfort of the vehicle consists of a cruise and STOP&GO control depending on traffic conditions. Desired steering angle is determined through the lateral position error and the yaw angle error based on preview optimal control. Motor control inputs have been directly derived from the sliding control law. The performance of the autonomous driving control which is integrated with a lateral and longitudinal control is investigated by computer simulations and driving test using an electric vehicle. Electric vehicle system consists of DC driving motor, an electric power steering system, main controller (Autobox)

  • PDF

A Study on the Assessment of Blind Spot Detection for Road Alignment (도로 선형에 따른 사각지역 감시장치 평가에 관한 연구)

  • Lee, Hongguk;Park, Hwanseo;Chang, Kyungjin;Yoo, Songmin
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • Recently, in order to reduce traffic accident related fatalities, increasing number of studies are conducted regarding the vehicle safety enhancement devices. But very few studies about test procedures and requirements for vehicle safety systems are being carried out. Since BSD, as one of the most important safety features, is installed on a new vehicle, its performance test method has to be evaluated. Independent factors irrelevant to the device types including collision position, vehicle speed and closing speed are used to calculate test distance away from the current vehicle. Effect of roadway geometry as radius of curvature is introduced to propose possible misjudgement of following vehicle as adjacent one. The study results would be utilized to enhance the test procedure of BSD performance.

Performance Evaluation of Vehicle-mounted Mobile Relay in Next Generation Cellular Networks

  • Heo, Keun-Hang;Kang, Hyun-Sik;Moon, Un-Chul;Lee, Jung-Ryun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.874-887
    • /
    • 2011
  • Compared to nomadic and fixed relay stations, vehicle-mounted mobile relay stations show different characteristics caused by the time-variant topology, due to their mobility. Especially, a relay mounted in a vehicle is differentiated from nomadic or fixed relay by the restricted distance between the relay and associated mobile station and the variable density of relay deployment in a cell. In this paper, we identify the characteristics of vehicle-mounted mobile relay stations and provide some parameters that highly influence the performance of vehicle-mounted relay. Through simulation, we measure the effect of relay density, zone ratio, relay transmission power, and frame transmission mode on the performance of vehicle-mounted relay. The results show that the performance of vehicle-mounted relay is highly susceptible to the above vehicle-mounted relay-specific parameters.

A Vehicle Routing Model for Multi-Supply Centers Based on Lp-Distance (일반거리산정방법을 이용한 다-물류센터의 최적 수송경로 계획 모델)

  • Hwang, Heung-Suk
    • IE interfaces
    • /
    • v.11 no.1
    • /
    • pp.85-95
    • /
    • 1998
  • This study is focussed on an optimal vehicle routing model for multi-supply centers in two-echelon logistic system. The aim of this study is to deliver goods for demand sites with optimal decision. This study investigated an integrated model using step-by-step approach based on relationship that exists between the inventory allocation and vehicle routing with restricted amount of inventory and transportations such as the capability of supply centers, vehicle capacity and transportation parameters. Three sub-models are developed: 1) sector-clustering model, 2) a vehicle-routing model based on clustering and a heuristic algorithm, and 3) a vehicle route scheduling model using TSP-solver based on genetic and branch-and-bound algorithm. Also, we have developed computer programs for each sub-models and user interface with visualization for major inputs and outputs. The application and superior performance of the proposed model are demonstrated by several sample runs for the inventory-allocation and vehicle routing problems.

  • PDF

Heuristic Algorithm for Searching Multiple Paths (복수 경로 탐색을 위한 휴리스틱 알고리즘에 대한 연구)

  • Shin, Yongwook;Yang, Taeyong;Baek, Won
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.3
    • /
    • pp.226-235
    • /
    • 2006
  • Telematics is expected to be one of the fastest growing businesses in information technology area. It may create a new emerging market in industry related to automotive, telecommunications, and information services. Especially vehicle navigation service is considered as a killer application among telematics service applications. The current vehicle navigation service typically recommends a single path that is based on the traveling time or distance from the origin to the destination. The system provides two options for users to choose either via highway or via any road. Since the traffics and road conditions of big cities are very complicated and dynamic, the demand of multi-path guidance system is increasing in telematics market. The multi-path guidance system should allow drivers to choose a path based on their individual preferences such as traveling time, distance, or route familiarity. Using the Lawler's algorithm, it is possible to find multiple paths; however, due to the lengthy computational time, it is not suitable for the real-time services. This study suggests a computationally feasible and efficient heuristic multiple paths finding algorithm that is reliable for the real-time vehicle navigation services.