• Title/Summary/Keyword: vehicle distance

Search Result 1,212, Processing Time 0.03 seconds

Vehicle Tests of a Longitudinal Control Law for Application to Stop-and-Go Cruise Control

  • Moon, Ilki;Yi, Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1166-1174
    • /
    • 2002
  • This paper presents the implementation and vehicle tests of a vehicle longitudinal control scheme for Stop and Go cruise control. The control scheme consists of a vehicle-to-vehicle distance control algorithm and throttle/brake control algorithm for acceleration tracking. The desired acceleration of a vehicle for vehicle-to-vehicle distance control has been designed using Linear Quadratic optimal control theory. Performance of the control algorithm has been investigated via vehicle tests. A millimeter wave radar sensor has been used for distance measurement. A stepper motor and an electronic vacuum booster have been used for throttle/brake actuators, respectively. It has been shown that the proposed control algorithm can provide satisfactory performance.

Inter-vehicular Distance Estimation Scheme Based on VLC using Image Sensor and LED Tail Lamps in Moving Situation (후미등의 가시광통신을 이용한 이동상황에서의 영상센서 기반 차량 간 거리 추정 기법)

  • Yun, Soo-Keun;Jeon, Hui-Jin;Kim, Byung Wook;Jung, Sung-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.935-941
    • /
    • 2017
  • This paper proposes a method for estimating the distance betweeen vehicles in a moving situation using the image ratio of the distance between the tail lamps of a front vehicle. The actual distance between the tail lamps of a front vehicle was transmitted by LED tail lamps using visible light communication. As the distance between the front vehicle and the rear vehicle changes, it calculates the ratio of the pixel width between the tail lamps of the front vehicle projected on the image. The calculated values are used to derive a distance-mapping function through non-linear regression technique. Then, the distance between vehicles in the moving situation is estimated based on this function.

Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed (차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성)

  • Han, In-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

Vehicle - to - Vehicle Distance Control using a Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 차간 거리 제어)

  • 조상민;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.123-129
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method far application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary intelligent cruise control algorithm.

The Vehicle Classification Using Chamfer Matching and the Vehicle Contour (차량의 윤곽선과 Chamfer Matching을 이용한 차량의 형태 분류)

  • Nam, Jin-Woo;Dewi, Primastuti;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.193-196
    • /
    • 2010
  • In this paper, we propose a method to classify the types of vehicle as full, medium, or small size. The proposed method is composed of three steps. First, after obtaining vehicle contour from template candidate image, edge distance template is created by distance transform of the vehicle's contour. Second, the vehicle type of input image is classified as the type of template which has minimal edge distance with input image. The edge distance value means the measurement of distance between input image and template at each pixel which is part of vehicle contour. Experimental results demonstrate that our method presented a good performance of 80% about test images.

  • PDF

Remote Control of an unmaned vehicle of shortage of hands using Internet (인터넷을 이용한 지능형 무인 차량의 원격제어)

  • 김승철;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.57-61
    • /
    • 2002
  • We design Collision Avoidance System using model vehicle. The purpose of this system(Collision Avoidance System) is to maintain continuously constant distance between a forward running vehicle and a following automatic guided vehicle(AGV). For this system, we design modeling of vehicle and observe this through simulation. By sing super sonic sensors to measure the distance between vehicles and controller using 80c196kc for changing velocity of motor, we design Collision Avoidance System as maintaining continuously constant distance between vehicles.

  • PDF

An Experimental Investigation of a Collision Warning System for Automobiles using Hardware-in-the-Loop Simulations (차간거리 경보시스템의 HiLS 구현)

  • 송철기;김성하;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.222-227
    • /
    • 1998
  • Collision warning systems have been an active research and development area as the interests and demands for ASV's (Advanced Safety Vehicles) have increased. This paper presents an experimental investigation of a collision warning system for automobiles. A collision warning HiLS(Hardware-in-the-Loop Simulation) system has been designed and used to test the collision warning algorithm, radar sensors, and warning displays under realistic operating conditions in the laboratory. the collision warning algorithm is operated by a warning index, which is a function of the warning distance and the braking distance. The computer calculates velocities of the preceding vehicle and following vehicle, relative distance and relative velocity of the vehicles using vehicle simulation models. The relative distance and the relative velocity are applied to the vehicle simulator controlled by a DC motor.

  • PDF

Vehicle-induced aerodynamic loads on highway sound barriers part1: field experiment

  • Wang, Dalei;Wang, Benjin;Chen, Airong
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.435-449
    • /
    • 2013
  • The vehicle-induced aerodynamic loads bring vibrations to some of the highway sound barriers, for they are designed in consideration of natural wind loads only. A field experiment is carried out with respect to three important factors: vehicle type, vehicle speed and the vehicle-barrier separation distance. Based on the results, the time-history of pressures is given, showing identical characteristics in all cases. Therefore, the vehicle-induced aerodynamic loads acting on the highway sound barrier are summarized as the combination of "head impact" and "wake impact". The head impact appears to have potential features, while the wake impact is influenced by the rotational flow. Then parameters in the experiment are analyzed, showing that the head impact varies with vehicle speed, vehicle-barrier separation distance, vehicle shape and cross-sectional area, while the wake impact is mainly about vehicle-barrier separation distance and vehicle length.

Long Distance Vehicle Recognition and Tracking using Shadow (그림자를 이용한 원거리 차량 인식 및 추적)

  • Ahn, Young-Sun;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.251-256
    • /
    • 2019
  • This paper presents an algorithm for recognizing and tracking a vehicle at a distance using a monocular camera installed at the center of the windshield of a vehicle to operate an autonomous vehicle in a racing. The vehicle is detected using the Haar feature, and the size and position of the vehicle are determined by detecting the shadows at the bottom of the vehicle. The region around the recognized vehicle is determined as ROI (Region Of Interest) and the vehicle shadow within the ROI is found and tracked in the next frame. Then the position, relative speed and direction of the vehicle are predicted. Experimental results show that the vehicle is recognized with a recognition rate of over 90% at a distance of more than 100 meters.

Vehicle Stop and Go Cruise Control using a Vehicle Trajectory Prediction Method (차량 궤적 예측기법을 이용한 차량 정지/서행 순항 제어)

  • 조상민;이경수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.206-213
    • /
    • 2002
  • This paper proposes a vehicle trajectory prediction method for application to vehicle-to-vehicle distance control. This method is based on 2-dimensional kinematics and a Kalman filter has been used to estimate acceleration of the object vehicle. The simulation results using the proposed control method show that the relative distance characteristics can be improved via the trajectory prediction method compared to the customary vehicle stop and go cruise control systems which makes the vehicle remain at a safe distance from a preceding vehicle according to the driver's preference, automatically slow down and come to a full stop behind a preceding vehicle.