• 제목/요약/키워드: vehicle detection system

검색결과 797건 처리시간 0.03초

실외 도로에서의 영상기반 차량 감시에 관한 연구 (A Study for Video-based Vehicle Surveillance on Outdoor Road)

  • 박근수;김현태
    • 한국전자통신학회논문지
    • /
    • 제8권11호
    • /
    • pp.1647-1654
    • /
    • 2013
  • 실외 도로에서의 차량 검출 성능은 기상 상태, 태양 이동에 의한 그림자, 조도 변화 등에 영향을 받는다. 본 논문에서는 낮 시간대의 실외도로에서 이러한 주변 환경변화에 강건한 배경 추정 알고리즘과 연동한 차량 검출 시스템을 제안한다. 배경 추정 알고리즘은 혼합 가우시안 모델을 적용하고 후보 영역에 대한 차량 검출은 Adaboost 알고리즘을 적용하였다. 흐린 날, 비오는 날 등 동일한 실제 도로에서 서로 다른 기후에 획득한 CCTV 비디오 영상을 사용한 실험을 통해 제안하는 방법이 일반 도로에서의 차량 검출에 유용한 것을 확인하였다.

무인 수상정의 융합 항법 및 GPS 이상 검출 (Fused Navigation of Unmanned Surface Vehicle and Detection of GPS Abnormality)

  • 고낙용;정석기
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.723-732
    • /
    • 2016
  • This paper proposes an approach to fused navigation of an unmanned surface vehicle(USV) and to detection of the outlier or interference of global positioning system(GPS). The method fuses available sensor measurements through extended Kalman filter(EKF) to find the location and attitude of the USV. The method uses error covariance of EKF for detection of GPS outlier or interference. When outlier or interference of the GPS is detected, the method excludes GPS data from navigation process. The measurements to be fused for the navigation are GPS, acceleration, angular rate, magnetic field, linear velocity, range and bearing to acoustic beacons. The method is tested through simulated data and measurement data produced through ground navigation. The results show that the method detects GPS outlier or interference as well as the GPS recovery, which frees navigation from the problem of GPS abnormality.

스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델 (Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems)

  • 김도영;장성진;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.469-472
    • /
    • 2022
  • 최근 지능형 교통 시스템의 발전에 따라 딥러닝을 기술을 적용한 다양한 기술들이 활용되고 있다. 도로를 주행하는 불법 차량 및 범죄 차량 단속을 위해서는 차량 종류를 정확히 판별할 수 있는 차종 분류 시스템이 필요하다. 본 연구는 YOLO(You Only Look Once)를 이용하여 이동식 차량 단속 시스템에 최적화된 차종 분류 시스템을 제안한다. 제안 시스템은 차량을 승용차, 경·소·중형 승합차, 대형 승합차, 화물차, 이륜차, 특수차, 건설기계, 7가지 클래스로 구분하여 탐지하기 위해 단일 단계 방식의 객체 탐지 알고리즘 YOLOv5를 사용한다. 인공지능 기술개발을 위하여 한국과학기술연구원에서 구축한 약 5천 장의 국내 차량 이미지 데이터를 학습 데이터로 사용하였다. 한 대의 카메라로 정면과 측면 각도를 모두 인식할 수 있는 차종 분류 알고리즘을 적용한 지정차로제 단속 시스템을 제안하고자 한다.

  • PDF

Vehicle Classification by Road Lane Detection and Model Fitting Using a Surveillance Camera

  • Shin, Wook-Sun;Song, Doo-Heon;Lee, Chang-Hun
    • Journal of Information Processing Systems
    • /
    • 제2권1호
    • /
    • pp.52-57
    • /
    • 2006
  • One of the important functions of an Intelligent Transportation System (ITS) is to classify vehicle types using a vision system. We propose a method using machine-learning algorithms for this classification problem with 3-D object model fitting. It is also necessary to detect road lanes from a fixed traffic surveillance camera in preparation for model fitting. We apply a background mask and line analysis algorithm based on statistical measures to Hough Transform (HT) in order to remove noise and false positive road lanes. The results show that this method is quite efficient in terms of quality.

Anomaly detection of smart metering system for power management with battery storage system/electric vehicle

  • Sangkeum Lee;Sarvar Hussain Nengroo;Hojun Jin;Yoonmee Doh;Chungho Lee;Taewook Heo;Dongsoo Har
    • ETRI Journal
    • /
    • 제45권4호
    • /
    • pp.650-665
    • /
    • 2023
  • A novel smart metering technique capable of anomaly detection was proposed for real-time home power management system. Smart meter data generated in real-time were obtained from 900 households of single apartments. To detect outliers and missing values in smart meter data, a deep learning model, the autoencoder, consisting of a graph convolutional network and bidirectional long short-term memory network, was applied to the smart metering technique. Power management based on the smart metering technique was executed by multi-objective optimization in the presence of a battery storage system and an electric vehicle. The results of the power management employing the proposed smart metering technique indicate a reduction in electricity cost and amount of power supplied by the grid compared to the results of power management without anomaly detection.

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬 (A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System)

  • 이경수;문일기;안장모
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.215-215
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

Steer-by-Wire 시스템의 감지기에 대한 강인한 이상진단기법 (A Robust Method of Fault Diagnosis for Steer-by-Wire System's Sensor)

  • 문승욱;지용관;허건수;조동일;박장현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1463-1467
    • /
    • 2005
  • This paper proposes an analytical redundancy technique for fault diagnostics of the sensor in steer-by-wire system. We use incorporating vehicle dynamics modeling into the design of a diagnostic system for steer-by-wire system. The use of a model of vehicle dynamics improves the speed and accuracy of the diagnoses. The proposed fault diagnostics algorithm is based on parity-space methods to generate residuals. To reduce the effects of modeling uncertainty and dynamic transients, the residuals are subject to filtering. We construct diagnostic system consisting residual threshold for detection and isolator with using the directional residual vector.

  • PDF

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

과수원용 차량의 자율주행을 위한 적외선 측거 장치개발 (Development of Infrared Telemeter for Autonomous Orchard Vehicle)

  • 장익주;김태한;이상민
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.131-140
    • /
    • 2000
  • Spraying operation is one of the most essential in an orchard management and it is also hazardous to human body. for automatic and unmanned spraying , an autonomous travelling vehicle is demanded. In this study, a telemeter was developed using infrared beam which could detect trunks and obstacles measure distance and direction from the vehicle travelling in the orchard. The telemeter system was composed of two infrared LED transmitters and receivers, a beam scanning device for continuous object detection , two rotary encoders for angle detector, and a beam level controller for uneven soil surface. The detected distance and direction signal s were sent to personal computer which made for the system display the angular and distance measurements through I/O board. According to a field test in an apple farm, the system detected up to 10m distance under 12 V of transmitted beam intensity, however, it was recommended that the proper beam transmit intensity be 7 v at the 10 m distance, because of the negative effect to human body at 12 V. The error rate of this system was 0.92 % when the actual distance was compared to measured one. The system was feasible at the small error rate. The developed telemeter system was an important part for autonomous travelling vehicle provided the real time object recognition . A direction control system could be constructed suing the system. It is expected that the system could greatly contribute to the development of autonomous farm vehicle.

  • PDF