• 제목/요약/키워드: vehicle deformation

검색결과 320건 처리시간 0.022초

상전도 흡인식 자기부상열차의 주행 안정성 해석 (Stability Analysis of a Maglev Vehicle Utilizing Electromagnetic Suspension System)

  • 한형석;김숙희;임봉혁;허영철
    • 한국자동차공학회논문집
    • /
    • 제16권3호
    • /
    • pp.118-126
    • /
    • 2008
  • The levitation stability of a Maglev vehicle utilizing electromagnetic suspension is primarily influenced by the deformation, roughness, and vibration of the guideway. Optimum design for both the vehicle and the guideway is desirable in order to reduce guideway construction cost, while meeting requirements for stability and ride quality. This paper presents an analysis of the levitation stability of the UTM-01, an urban Maglev vehicle, using a numerical simulation. The ODYN/Maglev, a dynamics analysis program, is used to simulate dynamics to evaluate the stability. A running test of the UTM-01 is also carried out to verify the results of the simulation. Using the simulation results, the levitation stability of the UTM-01 can be numerically analyzed at a variety of vehicle speeds.

FEM을 이용한 자기부상열차/궤도 동적 상호작용 시뮬레이션 (Simulation of Dynamic Interaction Between Maglev and Guideway using FEM)

  • 한형석;김동성;이종민;강흥식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.363-368
    • /
    • 2004
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the guideway. This study introduces a dynamic interaction simulation technique that applies FEM. The proposed method uses FEM to model the elevated guideway and the Maglev vehicle, which is different from conventional studies. Because the proposed method uses FEM, it is useful to calculate the deformation of the elevated guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated according to velocity increase and can be reviewed again. From the result of the study, we concluded that FEM simulation of the dynamic interaction between the maglev vehicle and the guideway is possible.

  • PDF

자동차 보강 프레임에 대한 구조 설계 및 해석 (Structural Design and Analysis for the Reinforced Frame of Vehicle)

  • 강성수;조성근
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.504-510
    • /
    • 2010
  • To achieve the structural safety of the vehicle, designs in various cases are carried out by using CATIA program. It is promoted the relaxation of stresses by collisions from the front portion, the side part and the rear portion of the vehicle. In this study, we conduct a variety of design of frames for the light weight frame of the vehicle and structural analysis, to protect the driver by adding reinforced frame. In the case of such a collision, there are maximum stresses greater than yield strength of steel and a very large local plastic deformation at the collision part.

궤도의 유연성을 고려한 자기부상열차 주행 시뮬레이션 (Simulation of the Maglev Running on the Flexible Guideway)

  • 한형석;김동성;이종민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.113-118
    • /
    • 2005
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore. an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controler design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses FEM, it is useful to calculate the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded, that the dynamic interaction between the maglev vehicle and the flexible guideway is possible.

  • PDF

A Deformation Model of a Bag-Finger Skirt and the Motion Response of an ACV in Waves

  • Lee, Gyeong-Joong;Rhee, Key-Pyo
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제2권1호
    • /
    • pp.29-46
    • /
    • 1994
  • In this paper, the effect of a skirt deformation on the responses of an Air Cushion Vehicle in waves is investigated. The air in the bag and plenum chamber is assumed to be compressible and to have a uniform pressure distribution in each volume. The free surface deformation is determined in the framework of a linear potential theory by replacing the cushion pressure with the pressure patch which is oscillating and translating uniformly. And the bag-finger skirt assumed to be deformed due to the pressure disturbance while its surface area remained constant. The restoring force and moment due to the deformation of bag-finger skirt from equilibrium shape is incorporated with the equations of heave and pitch motions. The numerical results of motion responses due to various ratios of the bag and cushion pressure or bag-to-finger depth ratios are shown.

  • PDF

Analysis of large deformation and fatigue life of fabric braided composite hose subjected to cyclic loading

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.949-962
    • /
    • 2016
  • The braking hose in the automotive hydraulic braking system exhibits the complicated anisotropic large deformation while its movable end is moving along the cyclic path according to the steering and bump/rebound motions of vehicle. The complicated large deformation may cause not only the interference with other adjacent automotive parts but also the durability problem resulting in the fatal microcraking. In this regard, the design of high-durable braking hose with the interference-free layout becomes a hot issue in the automotive industry. However, since it has been traditionally relied on the cost-/time-consuming trial and error experiments, the cost- and time-effective optimum design method that can replace the experiment is highly desirable. Meanwhile, the hose deformed configuration and fatigue life are different for different hose cyclic paths, so that their characteristic investigation becomes an important preliminary research subject. As a preliminary step for developing the optimum design methodology, we in this study investigate the hose deformed configuration and the fatigue life for four representative hose cyclic paths.

반복삼축압축실험을 통한 사질토의 소성변형 특성에 관한 연구 (Study on Plastic Deformation of Cohesionless Soil through Cyclic Triaxial Test)

  • 신은철;강현회;최찬용;양희생
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1370-1376
    • /
    • 2008
  • The structure of railroad or subway is that low fare transportation system of the large traffic volume. Like this structure is subjected to the cyclic load of moving vehicle. Consequently the result of the settlement analysis or plastic deformation prediction of railroad bed could be used as an important factor in safety of the railroad. The results of cyclic triaxial test were used in the numerical analysis of power model which Li and Selig(1994) developed. The soil samples were obtained from the construction site of railroad. Cyclic triaxial test was conducted with the variation of the magnitude of cyclic load and soil types. The large magnitude of plastic deformation in the railroad bed is caused of structure failure of the railroad.

  • PDF

A real-time hybrid testing method for vehicle-bridge coupling systems

  • Guoshan Xu;Yutong Jiang;Xizhan Ning;Zhipeng Liu
    • Smart Structures and Systems
    • /
    • 제33권1호
    • /
    • pp.1-16
    • /
    • 2024
  • The investigation on vehicle-bridge coupling system (VBCS) is crucial in bridge design, bridge condition evaluation, and vehicle overload control. A real-time hybrid testing (RTHT) method for VBCS (RTHT-VBCS) is proposed in this paper for accurately and economically disclosing the dynamic performance of VBCSs. In the proposed method, one of the carriages is chosen as the experimental substructure loaded by servo-hydraulic actuator loading system in the laboratory, and the remaining carriages as well as the bridge structure are chosen as the numerical substructure numerically simulated in one computer. The numerical substructure and the experimental substructure are synchronized at their coupling points in terms of force equilibrium and deformation compatibility. Compared to the traditional iteration experimental method and the numerical simulation method, the proposed RTHT-VBCS method could not only obtain the dynamic response of VBCS, but also economically analyze various working conditions. Firstly, the theory of RTHT-VBCS is proposed. Secondly, numerical models of VBCS for RTHT method are presented. Finally, the feasibility and accuracy of the RTHT-VBCS are preliminarily validated by real-time hybrid simulations (RTHSs). It is shown that, the proposed RTHT-VBCS is feasible and shows great advantages over the traditional methods, and the proposed models can effectively represent the VBCS for RTHT method in terms of the force equilibrium and deformation compatibility at the coupling point. It is shown that the results of the single-degree-of-freedom model and the train vehicle model are match well with the referenced results. The RTHS results preliminarily prove the effectiveness and accuracy of the proposed RTHT-VBCS.

대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발 (Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck)

  • 오재윤;김학덕;송주현
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.

스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석 (Simulation Analysis on the Impact of Racing Car with Space Frame)

  • 조재웅;방승옥;김기선
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2341-2348
    • /
    • 2010
  • 본 논문에서는 충돌하중 하에서 스페이스 프레임을 사용하는 경주용 차량의 프레임 변형 및 응력을 분석한다. 충돌 시 변형을 최소한으로 줄이고, 취약부분을 파악하여 운전자의 안전을 확보한다. 탄소강의 물성치를 바탕으로 트러스 구조로 설계된 차량 프레임의 유한요소모델을 만들고, ANSYS 프로그램을 이용하여 정면충돌 시 속도 변화에 따른 충격량 증가가 프레임에 미치는 영향을 분석한다. 또한 정면, 측면, 후면 방향에 충돌하중을 적용하여 프레임의\ 변형을 해석한다. 정면 및 후면충돌에서는 운전석에 가해지는 영향이 적지만, 측면충돌 시 충격에 의한 변형이 운전석까지 진행된다. 이러한 변형에 대한 취약부분의 보강을 통하여 프레임의 안전성 설계를 증진시키고 시뮬레이션 해석의 결과를 실제 프레임 제작에 활용한다.