• Title/Summary/Keyword: vehicle collision

검색결과 582건 처리시간 0.033초

충돌시 3차원 거동특성 해석을 위한 모델링 (Three-Dimensional Modeling for Impact Behavior Analysis)

  • 하정섭;이승종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.353-356
    • /
    • 2002
  • In vehicle accidents, the rolling, pitching, and yawing which are produced by collisions affect the motions of vehicle. Therefore, vehicle behavior under impact situation should be analyzed in three-dimension. In this study, three-dimensional vehicle dynamic equations based on impulse-momentum conservation principles under vehicle impact are introduced for simulation. This analysis has been performed by the real vehicle impact data from JARI and RICSAC. This study suggested each system modeling such as suspension, steering, brake and tire as well as the appropriate vehicle behavior simulation model with respect to pre and post impact.

  • PDF

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제15권9호
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF

무인 소형궤도열차의 차량제어 알고리즘 (Vehicle Control Algorithm for PRT (Personal Rapid Transit) System)

  • 최규웅;이진수;원진명;최효정
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.827-828
    • /
    • 2006
  • This paper presents a vehicle control algorithm for Personal Rapid Transit (PRT) system. PRT system is a one-way direction network system which is composed of guideway branches, merging/diverging points. Vehicle control algorithm can be divided into two kinds. Those are merging control algorithm and the other. We emphasized on the merging control algorithm. For that, we first devised a front/virtual front vehicle finding strategies. Properly determined front/virtual front vehicle is the starting point of vehicle control. The objects of merging control are to avoid collision and to pass the merging point fluently. Which implies that jerk constraint and limits of acceleration and deceleration etc. are should be considered. To verify the validation of the vehicle algorithm, we executed simulations and presented test results.

  • PDF

자율주행차량 기능안전 시스템 기반 사고 시나리오 도출 (Traffic Accidents Scenarios Based on Autonomous Vehicle Functional Safety Systems)

  • 김희수;유용식;한효림;조민제;송태진
    • 한국ITS학회 논문지
    • /
    • 제22권6호
    • /
    • pp.264-283
    • /
    • 2023
  • 자율주행차량 사고는 일반차량 사고와 다르게 기술적 문제, 환경, 운전자와의 상호작용 등 다양한 요인에 기인한 사고 발생 가능성이 존재한다. 향후 자율주행 기술의 진보로 기존의 사고원인 이외에도 새로운 이슈들이 대두될 것으로 예상되며, 이에 대응하기 위한 다양한 시나리오 기반의 접근법이 필요하다. 본 연구에서는 자율주행 사고 리포트인, CA DMV collision report와 자율주행모드 해제 보고서인 Disengagement report, 자율주행 실제 사고영상을 수집하여 자율주행차량 교통사고 시나리오를 개발하였다. 시나리오는 ISO 26262의 기능안전 시스템 failure mode에 기반하여 도출되었으며, 자율주행 기능의 다양한 이슈를 반영하고자 하였다. 본 연구를 통해 도출된 자율주행차량 시나리오는 향후 다양한 자율주행차량 교통사고 예방과 대비에 기여할 뿐만 아니라 자율주행 기술의 안전성을 향상시키는 데 중요한 역할을 할 것으로 기대한다.

무인선의 도킹을 위한 유도법칙 설계 (Design of Guidance Law for Docking of Unmanned Surface Vehicle)

  • 우주현;김낙완
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.208-213
    • /
    • 2016
  • This paper proposes a potential field-based guidance law for docking a USV (unmanned surface vehicle). In most cases, a USV without side thrusters is an under-actuated system. Thus, there are undockable regions near docking stations where a USV cannot dock to a docking station without causing a collision or backward motion. This paper suggest a guidance law that prevents a USV from enter such a region by decreasing the lateral error to the docking station at the initial stage of the docking process. A Monte-carlo simulation was performed to validate the performance of the proposed method. The proposed method was compared to conventional guidance laws such as pure pursuit guidance and pure/lead pursuit guidance. As a result, the collision angle and lateral distance error of proposed method tended to have lower values compared to conventional methods.

차체구조용 CFRP 사이드부재의 정적 압궤특성에 관한 연구 (A Study on the Static Collapse Characteristics of CFRP Side Member for Vehicle)

  • 이길성;양인영
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.83-86
    • /
    • 2005
  • The front-end side members of automobiles, such as the hat-shaped section member, absorb most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP side members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial static collapse tests were performed for the members. The collapse mode and the energy absorption capability of the members were analyzed under the static load.

  • PDF

경량화용 사이드부재의 적층구성 및 단면형상 변화에 따른 에너지흡수 특성 (Energy Absorption Characteristics of Side Member for Light-weight Having Various Stacking Condition and Shape of Section)

  • 이길성;서현경;양인영;심재기
    • 대한기계학회논문집A
    • /
    • 제31권6호
    • /
    • pp.671-678
    • /
    • 2007
  • Front-side members of automobile, such as the hat shaped section members, are structures with the greatest energy absorbing capability in a front-end collision of vehicle. This paper was performed to analyze energy absorption characteristics of the hat shaped section members, which are basic shape of side member. The hat shaped section members consisted of the spot welded side member which was utilized to an actual vehicle and CFRP side member for lightweight of vehicle structural member. The members were tested under static axial loading by universal testing machine. Currently, stacking condition related to the collapse characteristics of composite materials is being considered as an issue fer the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. So, energy absorption characteristics were analyzed according to stacking condition and shape of section and compared the results of spot welded side member with those of CFRP side member.

대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발 (Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck)

  • 오재윤;김학덕;송주현
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.

드라이빙 시뮬레이터를 이용한 차내 보행자 충돌 경고정보시스템 효과평가 방법론 개발 및 적용 (Methodology for Evaluating Effectiveness of In-vehicle Pedestrian Warning Systems Using a Driving Simulator)

  • 장지용;오철
    • 대한교통학회지
    • /
    • 제32권2호
    • /
    • pp.106-118
    • /
    • 2014
  • 본 연구의 목적은 차내 보행자 경고정보 제공유무에 따른 운전자의 반응특성을 분석하고 충돌속도를 이용해 보행자 상해심각도를 산출하여 시스템의 교통안전효과를 평가하는 방법론을 개발하는 것이다. 운전자 반응특성 분석을 위해 드라이빙 시뮬레이터를 이용하여 피험자별 주행특성 자료를 수집하였으며, 시나리오는 보행자-차량 사고유형에 따라 2개의 시나리오로 구성하였다. 분석결과, Mid-block내의 보행자 무단횡단, 길가장자리구역의 보행자 통행 상황에서 경고정보 제공 전 후로 충돌속도는 위험운전자 그룹이 54%, 25% 감소하였고, 일반운전자 그룹은 26%, 33%감소하였다. 경고정보 제공 전 후의 충돌속도를 이용하여 산출한 보행자 사망확률은 보행자 무단횡단과 길가장자리 구역의 보행자 통행 상황에서 경고정보 제공 전 후로 위험운전자 그룹이 95%, 30% 감소하였고, 일반운전자 그룹은 80%, 89% 감소하는 것으로 나타났다. 본 연구에서 선정한 운전자 반응특성 평가지표 및 충돌속도에 따른 보행자 상해심각도를 산출하여 시스템의 효과를 평가하는 방법론은 향후 보행자-차량 간의 사고예방을 위한 기술 또는 시스템의 교통안전효과를 평가하는데 활용될 수 있을 것으로 기대된다.