• Title/Summary/Keyword: vehicle GPS data

Search Result 276, Processing Time 0.024 seconds

Predicting Common Moving Pattern of Livestock Vehicles by Using GPS and GIS: A case study of Jeju Island, South Korea

  • Qasim, Waqas;Jo, Jae Min;Jo, Jin Seok;Moon, Byeong Eun;Ko, Han Jong;Son, Won Geun;Son, Se Seung;Kim, Hyeon Tae
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.31-31
    • /
    • 2017
  • On farm evaluation for the control of airborne diseases like FMD and flu virus has been done in past but control of disease in process of transportation of livestock and manures is still needed. The objective of this study was to predict a common pattern of livestock vehicles movement. The analysis were done on GPS data, collected from drivers of livestock vehicles in Jeju Island, South Korea in year 2012 and 2013. The GPS data include the coordinates of moving vehicles according to time and dates, livestock farms and manure keeping sites. 2012 year data was added to ArcGIS and different tools were used for predicting common vehicle moving pattern. The common pattern of year 2012 were determined and considered as predicted common pattern for year 2013. To compare with actual pattern of year 2013 the same analysis was done to find the difference in 2012 and 2013 pattern. When the manure keeping sites and livestock farms were same in both years, as a result common pattern of 2012 and 2013 were similar but difference were found in patterns when the manure keeping sites and livestock farms were changed. In future for more accurate results and to predict the accurate pattern of vehicles movement, more dependent and independent variables will be required to make a suitable model for prediction.

  • PDF

OVERVIEW OF TELEMATICS: A SYSTEM ARCHITECTURE APPROACH

  • Cho, K.Y.;Bae, C.H.;Chu, Y.;Suh, M.W.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.509-517
    • /
    • 2006
  • In the mid 1990s, the combination of vehicles and communication was expected to bolster the stagnant car industry by offering a flood of new revenues. In-vehicle computing systems provide safety and control systems needed to operate the vehicle as well as infotainment, edutainment, entertainment, and mobile commerce services in a safe and responsible manner. Since 1980 the word "telematics" has meant the blending of telecommunications and informatics. Lately, telematics has been used more and more to mean "automotive telematics" which use informatics and telecommunications to enhance the functionality of motor vehicles such as wireless data applications, intelligent cruise control, and GPS in vehicles. This definition identifies telecommunications transferring information as the key enabling technology to provide these advanced services. In this paper, a possible framework for future telematics, which called an Intelligent Vehicle Network(IVN), is proposed. The paper also introduces and compares a number of existing technologies and the terms of their capabilities to support a suite of services. The paper additionally the paper suggests and analyzes possible directions for future telematics from current telematics techniques.

Navigation System of UUV Using Multi-Sensor Fusion-Based EKF (융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계)

  • Park, Young-Sik;Choi, Won-Seok;Han, Seong-Ik;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

A Development of the Autonomous Driving System based on a Precise Digital Map (정밀 지도에 기반한 자율 주행 시스템 개발)

  • Kim, Byoung-Kwang;Lee, Cheol Ha;Kwon, Surim;Jung, Changyoung;Chun, Chang Hwan;Park, Min Woo;Na, Yongcheon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.2
    • /
    • pp.6-12
    • /
    • 2017
  • An autonomous driving system based on a precise digital map is developed. The system is implemented to the Hyundai's Tucsan fuel cell car, which has a camera, smart cruise control (SCC) and Blind spot detection (BSD) radars, 4-Layer LiDARs, and a standard GPS module. The precise digital map has various information such as lanes, speed bumps, crosswalks and land marks, etc. They can be distinguished as lane-level. The system fuses sensed data around the vehicle for localization and estimates the vehicle's location in the precise map. Objects around the vehicle are detected by the sensor fusion system. Collision threat assessment is performed by detecting dangerous vehicles on the precise map. When an obstacle is on the driving path, the system estimates time to collision and slow down the speed. The vehicle has driven autonomously in the Hyundai-Kia Namyang Research Center.

Development of Remote Vehicle Information Storage System Using Wireless Communication (무선통신을 이용한 원격 차량운행정보 저장시스템 개발)

  • 이중현;고국원;최병욱;고경철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.576-579
    • /
    • 2004
  • Recently, using GPS and equipment that recognizes the position of the car such a computer system inside the car are very universalized. Specially, the technique that diagnoses troubles and prevents troubles through scanning engine ECU is very popularized also. However, because these data have to be directly transferred and received from the car, in cases of traffic accident such as serious damage or car theft, it is impossible to receive the data at the time of accident. In order to receive and preserve the data safely regardless of these situations, it is possible to provide data for analyzing reasons of accident and prevent accidents from occurring by using wireless communication to receive the transferred information of the car, then saving into a Database system DB, or grasping the situation of the car and the driving pattern of drivers through analyzing stored data. Moreover, due to developing some related services such as providing the information about the real time of the accident, diagnoses of the car and alarms, etc. It is expected to contribute to creating added values.

  • PDF

Field Application Analysis of Center Control Emergency Vehicle Preemption System (중앙제어방식 긴급자동차 우선신호 현장적용성 분석)

  • Lee, Young-Hyun;Han, Seung-Chun;Jeong, Do-Young;Kang, Jin-Dong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.137-154
    • /
    • 2019
  • This study analysed the center control emergency vehicle preemption[EVP] test result on the 1.782 km section around Gangbuk Fire Station. The pros and cons between center control and site control EVP was compared through the review of existing research. The test site was selected based on the higher link speed for choosing low congested area and 4 to 6 lane road. EVP operates green extension under the estimated arrival time to each intersection. This study is about EVP system field application and its evaluation by analyzing EVP operation result with the emergency vehicle's trace, GPS data. The impact on the surrounding traffic was analysed in delay from the queue length survey. Analysis showed the decrease in averge travel time 41.81%, but the increase in delay of surrounding traffic slightly. It is expected that EVP can be applied to the expanded area by researching EVP compensation scheme.

Indoor Precise Positioning Technology for Vehicles Using Floor Marks (플로어 마크를 이용한 차량용 실내 정밀 측위 기술)

  • Park, Ji-hoon;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2321-2330
    • /
    • 2015
  • A variety of studies for indoor positioning are now being in progress due to the limit of GPS that becomes obsolete in the room. However, most of them are based on private wireless networks and the situation is difficult to commercialize them since they are expensive in terms of installation and maintenance costs, non-real-time, and not accurate. This paper applies the mark recognition algorithm used in existing augmented reality applications to the indoor vehicle positioning application. It installs floor marks on the ground, performs the perspective transformation on it and decodes the internal data of the mark and, as a result, it obtains an absolute coordinate. Through the geometric analysis, it obtains current position (relative coordinates) of a vehicle away from the mark and the heading direction of the vehicle. The experiment results show that when installing the marks every 5 meter, an error under about 30 cm occurred. In addition, it is also shown that the mark recognition rate is 43.2% of 20 frames per second at the vehicle speed of 20km/h. Thus, it is thought that this idea is commercially valuable.

Development of a Lateral Control System for Autonomous Vehicles Using Data Fusion of Vision and IMU Sensors with Field Tests (비전 및 IMU 센서의 정보융합을 이용한 자율주행 자동차의 횡방향 제어시스템 개발 및 실차 실험)

  • Park, Eun Seong;Yu, Chang Ho;Choi, Jae Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 2015
  • In this paper, a novel lateral control system is proposed for the purpose of improving lane keeping performance which is independent from GPS signals. Lane keeping is a key function for the realization of unmanned driving systems. In order to obtain this objective, a vision sensor based real-time lane detection scheme is developed. Furthermore, we employ a data fusion along with a real-time steering angle of the test vehicle to improve its lane keeping performance. The fused direction data can be obtained by an IMU sensor and vision sensor. The performance of the proposed system was verified by computer simulations along with field tests using MOHAVE, a commercial vehicle from Kia Motors of Korea.

Development of Geographical Information System for the Realtime Environmental Radioactivity Monitoring (환경방사능 데이터 분석을 위한 실시간 환경 감시차량 관제 시스템 구축)

  • Shon, HoWoong;Kim, InHyun;Lee, Yun;Kim, YoungWoo
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • In this project, under the server-client environment, GIS for the radiological emergency and control system of the vehicles for the environmental radioactivity monitoring was complete. This system is able to display environmental radioactivity data and vehicle's locations through wireless network on real time. Furthermore, it supports not only static analysis function with the collected data regarding nuclear type, collecting time period and vehicle's location but also a documents printing out function.

  • PDF

Implementation of underwater precise navigation system for a remotely operated mine disposal vehicle

  • Kim, Ki-Hun;Lee, Chong-Moo;Choi, Hyun-Taek;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.102-109
    • /
    • 2011
  • This paper describes the implementation of a precise underwater navigation solution using a multiple sensor fusion technique based on USBL, GPS, DVL and AHRS measurements for the operation of a remotely operated mine disposal vehicle (MDV). The estimation of accurate 6DOF positions and attitudes is the key factor in executing dangerous and complicated missions. To implement the precise underwater navigation, two strategies are chosen in this paper. Firstly, the sensor frame alignment to the body frame is conducted to enhance the performance of a standalone dead-reckoning algorithm. Secondly, absolute position data measured by USBL is fused to prevent cumulative integration error. The heading alignment error is identified by comparing the measured absolute positions with the DR algorithm results. The performance of the developed approach is evaluated with the experimental data acquired by MDV in the South-sea trial.