• Title/Summary/Keyword: vegetation growth

Search Result 710, Processing Time 0.027 seconds

Effects of Environmental Factors on the Stability and Vegetation Survival in Cutting Slope of Forest Roads (임도 절토 비탈면의 안정과 식생활착에 미치는 환경인자의 영향)

  • Jung, Won-Ok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.2
    • /
    • pp.74-83
    • /
    • 2001
  • The purpose of this study was investigate to the influence of forest roads characteristics and environment factors on the soil erosion, stability and vegetation survival of cut slope in forest roads. The results obtained could be summarized as follows; 1. The correlated factors between slope erosion and variables in cut slope were altitude, convex, degree of slope, length of slope and soil depth. In the stepwise regression analysis, length of slope and soil hardness was a high significant and its regression equation was given by -89.6136 + 15.0667X14 + 16.6713X15($R^2$ = 0.6712). 2. The main factors influencing the stability of cut slope were significant in order of coverage, middle, convex, length of slope and north, and its discriminant equation was given by -1.019 + 0.064X22 - 0.808X8 - 0.622X24 + 0.742X11 - 0.172X14 - 0.545X6 ($R^2$ = 0.793). 3. The centroids value of discriminant function in the stability and unstability estimated to 1.244 and -1.348, respectively. The boundary value between two groups related to slope stability was -0.1038. The prediction rate of discriminant function for stability evaluation of was as high as 91.3%. 4. The dominant species of invasion vegetation on the cut slope consist with Carex humilis, Agropyron tsukushiense var. transiens, Calamagrostis arundinacea, Miscanthus sinensis var. purpurascens, and Ixeris dentata in survey area. The rate of vegetation invasion more increased by time passed. 5. The life form of invasion vegetation in cut slop showed to $H-D_1-R_{2,3}-e$ type of the hemicryptophyte of dormancy form, dissem inated widely by wind and water of dissminule type, moderate extent and narrowest extent of radicoid type, erect form of growth form. 6. The correlated factors between forest enviroment and coverage appeared north, passage years and middle position of slope at 5% level. The forest environment factors influencing the invasion plants in survey area were shown in order to altitude, passage years, rock(none), forest type(mixed) and stone amount. The regression equation was given by 17.5228 - 0.0911X3 + 3.6189X28 15.8493X22 19.8544X25 + 0.3558X26 ($R^2$ = 0.4026).

  • PDF

River Ecosystem and Floristic Characterization of Riparian Zones at the Youngjeong River, Sacheon-ci, Korea (사천시 용정천에서 하천 생태계와 하안단구 지역의 수변식물상)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.301-309
    • /
    • 2017
  • This study is examined river naturality and vegetative composition of river riparian zones to identify their most important sources of variation. Information on plant species cover and on physical characteristics that occur at upper, medium, and low areas was collected for 30 riparian plots located throughout the Youngjeong River in Korea. The riparian areas of river banks are dominated by mixed sediment and the vegetation is composed of herbs, shrub, and trees. The floristic characterization of riparian at this river during 2015 season was identified with a total of 28 families, 72 genera, 75 species, 13 varieties, 23 associations. The vegetations of low water's edge and flood way at upper region were naturally formed various vegetation communities by natural erosion. Forty plant species were identified around the upper region, where the dominant growth form was mostly trees. The flood way vegetation at middle region was both of natural vegetation and artificial vegetation. Land uses in riparian zones river levee at low region were bush or grassland as natural floodplain. The values of cover-abundance at upper, middle, and low region were total 9.26, 7.24, and 7.56, respectively. Grasses and forbs at the Youngjeong River have similar cover-abundance values. Recent, many riparian areas of this river have been lost or degraded for commercial and industrial developments. Thus, monitoring for biological diversity of plant species of this river is necessary for an adaptive management approach and the successful implementation of ecosystem management.

Initial responses of vegetation regeneration after strip clear cutting in secondary Korean red pine (Pinus densiflora) forest in Samcheok, Gangwon-do, South Korea (강원도 삼척 지역에서 소나무 이차림의 대상 벌채에 따른 초기 식생 재생 반응)

  • Jeong, Se-Yeong;Cho, Yong-Chan;Byun, Bong-Kyu;Kim, Hye-Jin;Bae, Kwan-Ho;Kim, Hyun-Seop;Kim, Jun-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.5
    • /
    • pp.785-790
    • /
    • 2015
  • As an alternative to large-scale clear cutting silviculture, strip clear cutting (SC) is being considered as a system compatible with ecological conservation and forest regeneration. In South Korea, application and effectiveness of SCC in varying forest types were rarely found. In this study, under the subject of strip clear cutting lands of pinus densiflora forest at Samcheok, Gangwon-do Province, the developmental aspect of low vegetation prior to and after deforestation and the correlation between environmental factor and pine regeneration were analyzed. The cover rate of understory vegetation was appeared to be increased after deforestation and rapidly increased two years after deforestation, and it was evaluated to be affected by vigorous tree species and photophilic species. From the perspective of relative importance value, Quercus mongolica, Artemisia keiskeana, and Rubus crataegifolius that influence the cover rate showed the inclination of continuous growth. The diversity of species showed increment inclination as well due to introduction and settlement of early transient species. As a result of analyzing the correlation between vegetation and environmental factor and generation of pine tree size, the soil exposure rate, intensity of light, and canopy openness showed positive relationship, and the understory vegetation cover and woody debris cover rate showed negative relationship.

Ecological Characteristics and Changes in Plant Community Structure in Mt. Cheongryang, Incheon (인천시 청량산의 생태적 특성과 식생구조의 변화)

  • Lee, Sang-Hee;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.74-88
    • /
    • 2021
  • In the present study, the characteristics and changes in the vegetation of Mt. Cheongryang, Inchon, were examined to identify and determine appropriate ways to restore the health of the urban forest and to preserve its vegetation. The vegetation of the community of Quercus mongolica (Mongolian oak) on Mt. Cheongryang appeared to decrease in response to the control of the wilt disease of oak trees. The communities of Sorbus alnifolia (Korean mountain ash) and Styrax japonicus (Snowbell tree) have increased. Pinus rigida (Pitch Pine) had its overall territory decrease, but the current state of the Pinus rigida (Pitch Pine) was estimated to be stable due to its dominance as a tree layer species. In regards to Robinia pseudoacacia (Black Locust), the urbanized species of Sorbus alnifolia (Korean mountain ash), and Styrax japonicus (Snowbell tree), their areas have increased with the appearance of Magnolia obovate (Whiteleaf Japanese Magnolia). The biodiversity of Mt. Cheongryang has decreased by simplifying species in the tree layer and understory species thereof, and the initial success of species in marginal areas has increased. The absence of potential succession was attributed to the termination of ecological succession; thereby, the current vegetation structure was concluded to be remaining as it is for the time being. Soil texture in the mountain primarily consisted of sandy loam or loamy sand; the pH of the soil was in the range 4.26-4.86, rendering a mean pH of 4.59. The content of organic matter (O.M.) appeared having a distributing range of 2.18-9.60%, rendering a mean value of 4.33%. To promote species diversity, several methods are suggested, such as prevention of soil acidification, selecting nationally-grown trees from moist soil or valleys for afforestation, preventing species appearing due to urbanization or excessive growth, protecting the understory vegetation and species with hygropreference, and managing the forest to maintain a multi-layered vegetation structure.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Assessment of Lodged Damage Rate of Soybean Using Support Vector Classifier Model Combined with Drone Based RGB Vegetation Indices (드론 영상 기반 RGB 식생지수 조합 Support Vector Classifier 모델 활용 콩 도복피해율 산정)

  • Lee, Hyun-jung;Go, Seung-hwan;Park, Jong-hwa
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1489-1503
    • /
    • 2022
  • Drone and sensor technologies are enabling digitalization of agricultural crop's growth information and accelerating the development of the precision agriculture. These technologies could be able to assess damage of crops when natural disaster occurs, and contribute to the scientification of the crop insurance assessment method, which is being conducted through field survey. This study was aimed to calculate lodged damage rate from the vegetation indices extracted by drone based RGB images for soybean. Support Vector Classifier (SVC) models were considered by adding vegetation indices to the Crop Surface Model (CSM) based lodged damage rate. Visible Atmospherically Resistant Index (VARI) and Green Red Vegetation Index (GRVI) based lodged damage rate classification were shown the highest accuracy score as 0.709 and 0.705 each. As a result of this study, it was confirmed that drone based RGB images can be used as a useful tool for estimating the rate of lodged damage. The result acquired from this study can be used to the satellite imagery like Sentinel-2 and RapidEye when the damages from the natural disasters occurred.

Estimation of Rice Growth Using RADARSTA-2 SAR Images at Seosan Region

  • Kim, Yihyun;Hong, Sukyoung;Lee, Kyoungdo;Jang, Soyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.237-244
    • /
    • 2013
  • Radar remote sensing is appropriate for monitoring rice because the areas where this crop is cultivated are often cloudy and rainy. Especially, Synthetic Aperture Radar (SAR) can acquire remote sensing information with a high temporal resolution in tropical and subtropical regions due to its all-weather capability. This paper analyzes the relationships between backscattering coefficients of rice measured by RADARSAT-2 SAR and growth parameters during a rice growth period. We examined the temporal variations of backscattering coefficients with full polarization. Backscattering coefficients for all polarizations increased until Day Of Year (DOY 222) and then decreased along with Leaf Area Index (LAI), fresh weight, and Vegetation Water Content (VWC). Vertical transmit and Vertical receive polarization (VV)-polarization backscattering coefficients were higher than Horizontal transmit and Horizontal receive polarization (HH)-polarization backscattering coefficients in early rice growth stage and HH-polarization backscattering coefficients were higher than VV-polarization backscattering coefficients after effective tillering stage (DOY 186). Correlation analysis between backscattering coefficients and rice growth parameters revealed that HH-polarization was highly correlated with LAI, fresh weight, and VWC. Based on the observed relationships between backscattering coefficients and variables of cultivation, prediction equations were developed using the HH-polarization backscattering coefficients.

Response of Structural, Biochemical, and Physiological Vegetation Indices Measured from Field-Spectrometer and Multi-Spectral Camera Under Crop Stress Caused by Herbicide (마늘의 제초제 약해에 대한 구조적, 생화학적, 생리적 계열 식생지수 반응: 지상분광계 및 다중분광카메라를 활용하여)

  • Ryu, Jae-Hyun;Moon, Hyun-Dong;Cho, Jaeil;Lee, Kyung-do;Ahn, Ho-yong;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1559-1572
    • /
    • 2021
  • The response of vegetation under the crop stress condition was evaluated using structural, biochemical, and physiological vegetation indices based on unmanned aerial vehicle (UAV) images and field-spectrometer data. A high concentration of herbicide was sprayed at the different growth stages of garlic to process crop stress, the above ground dry matter of garlic at experimental area (EA) decreased about 46.2~84.5% compared to that at control area. The structural vegetation indices clearly responded to these crop damages. Spectral reflectance at near-infrared wavelength consistently decreased at EA. Most biochemical vegetation indices reflected the crop stress conditions, but the meaning of physiological vegetation indices is not clear due to the effect of vinyl mulching. The difference of the decreasing ratio of vegetation indices after the herbicide spray was 2.3% averagely in the case of structural vegetation indices and 1.3~4.1% in the case of normalization-based vegetation indices. These results meant that appropriate vegetation indices should be utilized depending on the types of crop stress and the cultivation environment and the normalization-based vegetation indices measured from the different spatial scale has the minimized difference.

The Long-term Growth Characteristics of Vegetation Base Materials Include Spent Coffee Ground (커피박이 포함된 식생기반재의 장기생육특성)

  • Lee, Jundae;Yeon, Yonghum;Seong, Siyung;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.45-53
    • /
    • 2016
  • At present, coffee consumption amount is annually on the rise in Korea, which results in about 0.27 million tons of coffee waste annually. They are mostly classified as food waste and deserted with moisture contained, being a serious environmental issue. Existing slope greening techniques, which are vegetation based soil-media hydroseeding measures, have problems such as lack of coherence, dryness or lack of organic matters. Therefore in order to assess usability of Spent Coffee Ground (SCG), medium-to long-term growth test was conducted under the indoor and outdoor conditions. According to the result of growth test, when SCG was mixed with existing base materials, moisturizing power increased and organic matter content was reinforced, promoting germination and growth in a medium term. Among others, under the condition when supply of water was discontinued, withering rate was lower than existing base materials and diverse phenomena resulting from lack of nutrition decreased. Therefore, SCG as a waste organic matter with abundant nitrogen has the characteristic of inhibiting early growth but was found to have a quality favorable to long-term growth resulting from water containing ability and the supply of organic mater and is judged to be a material to replace or complement existing base materials.

Yearly Estimation of Rice Growth and Bacterial Leaf Blight Inoculation Effect Using UAV Imagery (무인비행체 영상 기반 연차 간 벼 생육 및 흰잎마름병 병해 추정)

  • Lee, KyungDo;Kim, SangMin;An, HoYong;Park, ChanWon;Hong, SukYoung;So, KyuHo;Na, SangIl
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.75-86
    • /
    • 2020
  • The purpose of this study is to develop a technology for estimating rice growth and damage effect according to bacterial leaf blight using UAV multi-spectral imagery. For this purpose, we analyzed the change of aerial images, rice growth factors (plant height, dry weight, LAI) and disease effects according to disease occurrence by using UAV images for 3 rice varieties (Milyang23, Sindongjin-byeo, Saenuri-byeo) from 2017 to 2018. The correlation between vegetation index and rice growth factor during vegetative growth period showed a high value of 0.9 or higher each year. As a result of applying the growth estimation model built in 2017 to 2018, the plant height of Milyang23 showed good error withing 10%. However, it is considered that studies to improve the accuracy of other items are needed. Fixed wing unmanned aerial photographs were also possible to estimate the damage area after 2 to 4 weeks from inoculation. Although sensing data in the multi-spectral (Blue, Green, Red, NIR) band have limitations in early diagnosis of rice disease, for rice varieties such as Milyang23 and Sindongjin-byeo, it was possible to construct the equation of infected leaf area ratio and rice yield estimation using UAV imagery in early and mid-September with high correlation coefficient of 0.8 to 0.9. The results of this study are expected to be useful for farming and policy support related to estimating rice growth, rice plant disease and yield change based on UAV images.