• Title/Summary/Keyword: vegetation carbon budget

Search Result 16, Processing Time 0.067 seconds

Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea

  • Jang, Rae-Ha;Lee, Seung-Yeon;Lee, Eung-Pill;Lee, Soo-In;Kim, Eui-Joo;Lee, Sang-Hun;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.390-399
    • /
    • 2019
  • Background: The Northern Hemisphere forest ecosystem is a major sink for atmospheric carbon dioxide, and the subalpine zone stores large amounts of carbon; however, their magnitude and distribution of stored carbon are still unclear. Results: To clarify the carbon distribution and carbon budget in the subalpine zone at volcanic Jeju Island, Korea, we report the C stock and changes therein owing to vegetation form, litter production, forest floor, and soil, and soil respiration between 2014 and 2016, for three subalpine forest ecosystems, namely, Abies koreana forest, Taxus cuspidata forest, and Juniperus chinensis var. sargentii forest. Organic carbon distribution of vegetation and NPP were bigger in the A. koreana forest than in the other two forests. However, the amount of soil organic carbon distribution was the highest in the J. chinensis var. sargentii forest. Compared to the amount of organic carbon distribution (AOCD) of aboveground vegetation (57.15 t C ha-1) on the subalpine-alpine forest in India, AOCD of vegetation in the subalpine forest in Mt. Halla was below 50%, but AOCD of soil in Mt. Halla was higher. We also compared our results of organic carbon budget in subalpine forest at volcanic island with data synthesized from subalpine forests in various countries. Conclusions: The subalpine forest is a carbon reservoir that stores a large amount of organic carbon in the forest soils and is expected to provide a high level of ecosystem services.

Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information (생태계 모형과 시공간 환경정보를 이용한 우리나라 식생 탄소 수지 추정)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Son, Yo-Whan;Ito, Akihiko
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • In this study, we simulated a carbon flux model, so called Vegetation Integrated Simulator for Trace gases (VISIT) using Spatio-temporal Environmental Information, to estimate carbon budgets of vegetation ecosystem in South Korea. As results of the simulation, the model estimated that the annual-average gross primary production (GPP), net primary production (NPP) for 10 years were $91.89Tg\;C\;year^{-1}$, and $40.16Tg\;C\;year^{-1}$, respectively. The model also estimated the vegetation ecosystems in South Korea as a net carbon sink, with a value of $3.51Tg\;C\;year^{-1}$ during the simulation period. Comparing with the anthropogenic emission of South Korea, vegetation ecosystems offsets 3.3% of human emissions as a net carbon sink in 2007. To estimate the carbon budget more accurately, it is important to prepare reliable input datasets. And also, model parameters should be calibrated through comparing with various independent method. The result of this study, however, would be helpful for devising ecosystem management strategies that may help to mitigate global climate change.

Biomass Estimation of Gwangneung Catchment Area with Landsat ETM+ Image

  • Chun, Jung Hwa;Lim, Jong-Hwan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.591-601
    • /
    • 2007
  • Spatial information on forest biomass is an important factor to evaluate the capability of forest as a carbon sequestrator and is a core independent variable required to drive models which describe ecological processes such as carbon budget, hydrological budget, and energy flow. The objective of this study is to understand the relationship between satellite image and field data, and to quantitatively estimate and map the spatial distribution of forest biomass. Landsat Enhanced Thematic Mapper (ETM+) derived vegetation indices and field survey data were applied to estimate the biomass distribution of mountainous forest located in Gwangneung Experimental Forest (230 ha). Field survey data collected from the ground plots were used as the dependent variable, forest biomass, while satellite image reflectance data (Band 1~5 and Band 7), Normalized Difference Vegetation Index (NDVI), Soil-Adjusted Vegetation Index (SAVI), and RVI (Ratio Vegetation Index) were used as the independent variables. The mean and total biomass of Gwangneung catchment area were estimated to be about 229.5 ton/ha and $52.8{\times}10^3$ tons respectively. Regression analysis revealed significant relationships between the measured biomass and Landsat derived variables in both of deciduous forest ($R^2=0.76$, P < 0.05) and coniferous forest ($R^2=0.75$, P < 0.05). However, there still exist many uncertainties in the estimation of forest ecosystem parameters based on vegetation remote sensing. Developing remote sensing techniques with adequate filed survey data over a long period are expected to increase the estimation accuracy of spatial information of the forest ecosystem.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

Alternatives for Quantifying Wetland Carbon Emissions in the Community Land Model (CLM) for the Binbong Wetland, Korea.

  • Eva Rivas Pozo;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.413-413
    • /
    • 2023
  • Wetlands are a critical component of the global carbon cycle and are essential in mitigating climate change. Accurately quantifying wetland carbon emissions is crucial for understanding and predicting the impact of wetlands on the global carbon budget. The uncertainty quantifying carbon in wetlands may comes from the ecosystem's hydrological, biochemical, and microbiological variability. The Community Land Model is a sophisticated and flexible land surface model that offers several configuration options such as energy and water fluxes, vegetation dynamics, and biogeochemical cycling, necessitating careful consideration for the alternative configurations before model implementation to develop a practical model framework. We conducted a systematic literature review, analyzing the alternatives, focusing on the carbon stock pools configurations and the parameters with significant sensitivity for carbon quantification in wetlands. In addition, we evaluated the feasibility and availability of in situ observation data necessary for validating the different alternatives. This analysis identified the most suitable option for our study site, the Binbong Wetland, in Korea.

  • PDF

Carbon Budget Evaluated in Two Urban Parks of Seoul (서울의 두 도시 근린공원에서 평가된 탄소수지)

  • Kim, Gyung Soon;Pi, Jung Hun;An, Ji Hong;Lim, Chi Hong;Jung, Song Hie;Joo, Seung Jin;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • This study was carried out to assess the carbon budget of two urban parks and one natural park and to prepare the plan for improving the ecological functions of the park including carbon sink. Net Ecosystem Production (NEP) of those study sites was calculated from the relationship between Net Primary Production (NPP) and soil respiration of each study site. To understand carbon budget of the whole area designated as the park, carbon budget of the urban park was analyzed by classifying the vegetated and the non-vegetated zones. NEP of the Nohae and the Sanggye parks calculated by reflecting areal size that the non-vegetated zones occupy were shown in -1.0 and $0.6\;ton\;C\;ha^{-1}yr^{-1}$, respectively. On the other hand, NEP of Mt. Bulam natural park as a reference site was in $2.3\;ton\;C\;ha^{-1}yr^{-1}$. Based on the result, the Nohae park was assessed as carbon source rather than carbon sink. On the other hand, the Sanggye park was classified as carbon sink but the role was poor compared with natural park. The result is, first of all, due to lower NPP of the vegetation introduced for the parks compared with natural vegetation. The other reason is due to wide arrangement of non-vegetated zone. To solve those problems and thereby to create the urban park with high ecological quality, selection of plant species suitable for the ecological characteristic of the park, their arrangement imitated natural vegetation, and ecological zoning were recommended.

Application of Simple Biosphere Model (SiB2) to Ecological Research (Simple Biosphere Model 2 (SiB2)의 생태학적 응용)

  • 김원식;조재일
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.245-256
    • /
    • 2004
  • The simple biosphere model 2 (SiB2), which is one of the land surface models, simulates the exchange of momentum, energy and mass such as water vapor and carbon dioxide between atmosphere and biosphere, and includes the biochemical sub-model for representation of stomatal conductance and photosynthetical activities. Throughout the SiB2 simulation, the significant information not only to understand of water and carbon budget but also to make an analysis of interaction such as feed-back and-forward between environment and vegetation is given. Using revised SiB2-Paddy, one sample study which is the evaluation of the runoff in Chaophraya river basin according to land use/cover change is presented in this review. Hence, SiB2 is available in order to ecological studied, if revised SiB2 for realistic simulation about soil respiration, computing leaf area index, vegetation competition and soil moisture is improved.

Relationship between Hydrologic Flux of Total Organic Carbon and Gross Primary Production (총 유기탄소의 수문학적 플럭스와 총 일차생산량 사이의 관계분석)

  • Park, Yoonkyung;Cho, Seonju;Choi, Daegyu;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.503-518
    • /
    • 2012
  • Models estimating carbon budget at land surface are mainly interested in vertical flux of carbon. On the other hand, studies on horizontal flux are obviously lacked to confirm that relationship between the hydrological flux of organic carbon discharged from catchment and terrestrial carbon production, a relation between Total Organic Carbon(TOC) and Gross Primary Production(GPP) tried analysis through cross correlation. The best correlation structure is correlation between GPP and TOC of flow-weighted mean concentration from watershed without delay. Furthermore, cross correlation analysis was performed by consider periodicity. The correlation between TOC and GPP in summer was similar to correlation without periodicity. Therefore, correlation between GPP and TOC was most regulated by the correlation between GPP and TOC at summer. As a result, the vegetation carbon and organic carbon from watershed is recognized a close relationship on the seasonal. Therefore, future research is correlation analyzing between vegetation variables according season, GPP and TOC, we are expected to use quantitative understanding that horizontal flux flow of carbon from the surface.

Effects of Macrophytes on Budget of Matters in Lake Paldang (대형수생식물이 팔당호의 물질 수지에 미치는 영향)

  • Park, Hae-Kyung;Jung, Dong-Il;Byeon, Myeong-Seop
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.85-92
    • /
    • 2006
  • To evaluate the primary production and nutrient uptake of macrophytes in Lake Paldang, this study investigate the vegetation areas of six dominant aquatic plants including Typha angustifolia, Zizania latifolia, Phragmites australis, Trapa japonica, Nelumbo nucifera and Savinia natans, and contents of carbon, nitrogen and phosphorus of each macrophyte. Total vegetation area of six dominant aquatic plants was 1.37 $km^2$. Among them, Typha angustifolia was the most wide-distributed species which occupied the 46.7% of total vegetation area. Littoral zone of South Han river had the largest vegetation area with 0.458 $km^2$, and North Han river, Kyungan river and confluence area in the order named. The results of the contents of carbon, nitrogen and phosphorus of macrophytes showed that the carbon contents of emergent macrophytes was higher than that of other life-forms. The nitrogen content of Salvinia natans, free-floating macrophyte was highest and that of Typha angustifolia, emergent macrophyte was lowest. The phosphorus content of Trapa japonica showed the highest content of phosphorus among six macrophytes and emergent macrophytes such as Zizania latifolia and Phragmites australis showed lower contents of phosphorus than other life-forms. The annual net primary production of macrophytes in Lake Paldang, 2004, was calculated as 758.4 ton C $yr^{-1}$ and the annual net nitrogen and phosphorus uptake of macrophyte was 16,921 kg $yr^{-1}$ and 1,841.0 kg P $yr^{-1}$ respectively. Comparing the total budget of organic carbon, nitrogen and phosphorus in Lake Paldang, the amount of primary production and nutrient uptake by macrophytes take a small portion in total budget implying macrophytes do not play an important role in budget of matters in river-type lake, Lake Paldang.

Retrieval of the Fraction of Photosynthetically Active Radiation (FPAR) using SPOT/VEGETATION over Korea (SPOT/VEGETATION 자료를 이용한 한반도의 광합성유효복사율(FPAR)의 산출)

  • Pi, Kyoung-Jin;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.537-547
    • /
    • 2010
  • The importance of vegetation in studies of global climate and biogeochemical cycles is well recognized. Especially. the FPAR (fraction of photosynthetically active radiation) is one of the important parameters in ecosystem productivity and carbon budget models. Therefore, accurate estimates of vegetation parameters are increasingly important in environmental impact assessment studies. In this study, optical FPAR using the Terra MODIS (MODerate resolution Imaging Spectroradiometer), SPOT VEGETATION and ECOCLIMAP data reproduced on the Korean peninsula. We applied the empirical method which is usually estimated as a linear or nonlinear function of vegetation indices. As results, we estimated the accurate expression which is 0.9039 of $R^2$ in cropland and 0.7901 of $R^2$ in forest. Finally, this study could be demonstrated to calibrate that produced FPAR while the overall pattern and random noise through the comparative analysis of FPAR on the reference data. Optimal use of input parameter on the Korean peninsula should be helping the accuracy of output as well as the improved quality of research.