• Title/Summary/Keyword: vegetable seeds

Search Result 124, Processing Time 0.02 seconds

Effects of Residues and Extracts of Leaf and Root Vegetables on the Germination and Growth of Cucumber and Tomato (채소류의 잔유물과 추출물이 오이와 토마토의 발아 및 초기생장에 미치는 영향)

  • Park Kuen Woo;Lee Jeong Hun;Kim Min-Jea;Won Jae Hee
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.200-208
    • /
    • 2004
  • Effects of cucumber and tomato seed germination by previous leaf and root vegetables (cabbage, radish, welsh onion, lettuce) residue in soil were tested in pot condition. Overall, suppression effect of welsh onion residue was the greatest in 4 tested crop residue and followed by radish, cabbage and lettuce, but lettuce residue didn't have effect on cucumber seed germination. Suppression were maintained ca. 20 days but after the time point, growth of cucumber and tomato were enhanced. Enhancing effect of welsh onion residue was the greatest in 4 tested crops residues and followed by radish, cabbage and lettuce. As a conclusion, residue of welsh onion, radish and cabbage were suppressed the germination of cucumber and tomato seeds but enhanced growth after 20 days of treatment. To verify the effective concentration of residue on suppression of germination and growth of radicle of cucumber and tomato, plant extract of welsh onion, radish, cabbage and lettuce were diluted as 5, 10, 17, 23, 35, 50, and $65\%$, and then tested. In low concentration treatment, 5, 10, 17, and $23\%$, all 4 crop extracts didn't suppress cucumber seed germination. High concentration of lettuce extract, 35, 50, and $65\%$, cucumber seed didn't germinate at all. In case of welsh onion extract, only $65\%$ treatment suppressed cucumber seed germination. In low concentration treatment, 17, and $23\%$, only the welsh onion extract suppressed young radicle. In case of high concentration treatment, except $35\%$, all four crops extract suppressed cucumber radicle growth. In low concentration treatment, tomato seed germination was suppressed by lettuce extract only but in high concentration treatment, 35, 50, and $65\%$, all extracts suppressed germination. Especially higher than $50\%$ treatment, tomato seed didn't germinate at all. Radicle growth was highly suppressed in welsh onion and lettuce extract, higher than $23\%$ concentration. As conclusion, leaf and root vegetable extracts suppressed cucumber and tomato seed germination and in high concentration, also suppressed radicle growth.

Analytical method of aflatoxins in edible oil and infant-children foods (식용유지와 영유아식품 중 아플라톡신 분석방법)

  • Hu, Soo-Jung;Park, Seung-Young;Kim, Soon-Sun;Lee, Joon-Goo;Song, Ji-Young;Kang, Eun-Gi;Lee, Hyun-Sook;Cho, Dae-Hyun
    • Analytical Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.150-157
    • /
    • 2011
  • Aflatoxins are secondary metabolites of the molds of Aspergillus flavus and Aspergillus parasiticus. They are highly carcinogenic compounds and can affect a wide range of vegetable commodities such as cereals (especially corn), nuts, peanuts, fruits and oil seeds, in the field and during storage. In fact, oilseeds are often stored for weeks in conditions that promote the mould growth, and the possible consequent presence of aflatoxins in oilseeds can lead to their transfer in oil. In addition, aflatoxins can be found as a natural contaminant in multi-cereals and beans making baby food for infants and young-children. The objective of this study was to validate the liquid extraction method or develop an analytical method for edible oil and infant-children foods. Therefore, this study developed condition of extract for aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$) in edible oil using a high performance liquid chromatography with florescence detector (HPLC/FLD). Aflatoxins were extracted from edible oil samples by means of MSPD (Matrix solid phased dispersion), utilizing $C_{18}$ as dispersing material and purified by using immunoaffinity column. The gression line coefficients were above 0.999. The recoveries for aflatoxins ranged from 85.9 to 93.0%, and relative standard deviations were below 5.7%. The new developed method of aflatoxins effectively enhanced recoveries by using MSPD-Immunoaffinity column compared with liquid extraction. The analytical method for liquid extraction of aflatoxin was appropriate for infant-children food. Reviewing the current method, the recoveries of aflatoxins ($B_1$, $B_2$, $G_1$ and $G_2$) were 89.5~92.3%.

Allelism and Molecular Marker Tests for Genic Male Sterility in Paprika Cultivars (파프리카 시판 품종에 대한 유전자적 웅성불임성의 대립성 및 분자표지의 유용성 검정)

  • Lee, Jun-Dae;Do, Jae-Wahng;Han, Jung-Heon;An, Chul-Geon;Kweon, Oh-Yoel;Kim, Yong-Kwon;Yoon, Jae-Bok
    • Horticultural Science & Technology
    • /
    • v.29 no.2
    • /
    • pp.130-134
    • /
    • 2011
  • Paprika (Capsicum annuum L.), a colored bell-type sweet pepper, is one of the most important money making vegetable crops in Korea. The cultivation area, total production, and exports of paprika are gradually getting increased, but the paprika cultivars used in Korea are all imported. It was well-known that the genic male sterility (GMS) is the main way to produce paprika hybrid seeds. However, it is little known that how many and what kinds of ms genes are used for breeding of paprika $F_1$ varieties. In this study, eight paprika cultivars ('Special', 'Debla', 'Plenty', 'Fiero', 'Boogie', 'Fiesta', 'Derby', and 'Minibell'), popularly cultivated in Korea and three different genic male sterile lines ('GMSP', 'GMS3', and 'GMSK') were used. For allelism test among the $F_1$ cultivars, half diallel crosses were performed. The result demonstrated that the most of the GMS in paprika cultivars except for 'Minibell' were same allele. To identify which GMS gene(s) were used for paprika $F_1$ cultivars, top crosses between previously known GMS lines and the $F_1$ cultivars were performed. As a result, we found that the $ms_k$ and the $ms_p$ genes were alleles for the GMS of 'Minibell' and for the other cultivars, respectively. We also confirmed that the GMS gene identification using GMSK-CAPS marker linked to the $ms_k$ gene and the PmsM1-CAPS marker linked to the $ms_p$ gene in $F_2$ progenies of 'Minibell' and 'Fiesta' and 'Derby' cultivars, respectively. In addition, we developed the PmsM2-CAPS marker for 'Plenty', 'Fiero', and 'Boogie' cultivars. We expect that these markers will be very useful for breeding new maternal (male sterile) line of paprika.

Comparative Analysis of Functional Compounds in Perilla frutescens at Different Stages and Growth Times (들깨의 생육단계와 부위별 기능성화합물 함량 비교 분석)

  • Kim, Hae Eun;Yun, Hee Rang;Heo, Jae Bok
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.511-519
    • /
    • 2021
  • The Perilla frutescens var. japonica HARA is widely cultivated in Korea for vegetable leaves and oil seeds. Perilla species have been used for food and medicine and are known to contain many functional compounds. In this study, we investigated the functional compound contents of Perilla during its growth stages to analyze the optimal harvest time and conditions. The contents of the Perilla sprouts were analyzed according to culture environment and days of growth. Sprouts grown in soil under natural light conditions showed high rosmarinic acid (23.19±0.16 mg/g) and GABA (0.55±0.05 mg/g) content. Therefore, the results suggest that 6 to 8 days after sowing in soil under natural light conditions was the optimum harvest condition for sprouts. Also, the functional compounds of Perilla were analyzed according to growth stage and plant part. As a result, caffeic acid and rosmarinic acid exhibited the highest content in the stage from vegetative growth to reproductive growth (0.28±0.03 ~ 0.30±0.07 mg/g rosmarinic acid and 20.60±7.02 ~ 19.37±3.18 mg/g caffeic acid), and luteolin and GABA showed the highest content in the reproductive growth stage and in the early stages of vegetative growth, respectively (31.11±2.98 ~ 22.35±1.64 ㎍/g luteolin and 0.42±0.09 ~ 0.37±0.04 mg/g GABA). It was confirmed that the content of caffeic acid (0.34±0.03 mg/g), rosmarinic acid (55.22±9.33 mg/g) and luteolin (1,044.89±6.72 ㎍/g) was the highest during the bolting stage. Overall, we identified the timing of the highest level of functional compounds in the sprouts and mature leaves of Perilla. These results suggest a suitable harvest time and conditions for sprouts and leaves for the use of Perilla as a functional material.