• Title/Summary/Keyword: vector-valued functions

Search Result 60, Processing Time 0.024 seconds

$L^{\infty}$-CONVERGENCE OF MIXED FINITE ELEMENT METHOD FOR LAPLACIAN OPERATOR

  • Chen, Huan-Zhen;Jiang, Zi-Wen
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.61-82
    • /
    • 2000
  • In this paper two so-called regularized Green's functions are introduced to derive the optimal maximum norm error estimates for the unknown function and the adjoint vector-valued function for mixed finite element methods of Laplacian operator. One contribution of the paper is a demonstration of how the boundedness of $L^1$-norm estimate for the second Green's function ${\lambda}_2$ and the optimal maximum norm error estimate for the adjoint vector-valued function are proved. These results are seemed to be to be new in the literature of the mixed finite element methods.

GENERALIZED SOLUTION OF THE DEPENDENT IMPULSIVE CONTROL SYSTEM CORRESPONDING TO VECTOR-VALUED CONTROLS OF BOUNDED VARIATION

  • Shin, Chang-Eon;Ryu, Ji-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.229-247
    • /
    • 2000
  • This paper is concerned with the impulsive Cauchy problem where the control function u is a possibly discontinuous vector-valued function with finite total variation. We assume that the vector fields f, $g_i$(i=1,…, m) are dependent on the time variable. The impulsive Cauchy problem is of the form x(t)=f(t,x) +$\SUMg_i(t,x)u_i(t)$, $t\in$[0,T], x(0)=$\in\; R^n$, where the vector fields f, $g_i$ : $\mathbb{R}\; \times\; \mathbb{R}\; \longrightarrow\; \mathbb(R)^n$ are measurable in t and Lipschitz continuous in x, If $g_i's$ satisfy a condition that $\SUM{\mid}g_i(t_2,x){\mid}{\leq}{\phi}$ $\forallt_1\; <\; t-2,x\; {\epsilon}\;\mathbb{R}^n$ for some increasing function $\phi$, then the imput-output function can be continuously extended to measurable functions of bounded variation.

  • PDF

THE CONVERGENCE THEOREMS FOR THE McSHANE-STIELTJES INTEGRAL

  • Yoon, Ju-Han;Kim, Byung-Moo
    • The Pure and Applied Mathematics
    • /
    • v.7 no.2
    • /
    • pp.137-143
    • /
    • 2000
  • In this paper, we define the uniformly sequence for the vector valued McShand-Stieltjes integrable functions and prove the dominated convergence theorem for the McShand-Stieltjes integrable functions.

  • PDF

QUASI-INNER FUNCTIONS OF A GENERALIZED BEURLING'S THEOREM

  • Kim, Yun-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1229-1236
    • /
    • 2009
  • We introduce two kinds of quasi-inner functions. Since every rationally invariant subspace for a shift operator S$_K$ on a vector-valued Hardy space H$^2$(${\Omega}$, K) is generated by a quasi-inner function, we also provide relationships of quasi-inner functions by comparing rationally invariant subspaces generated by them. Furthermore, we discuss fundamental properties of quasi-inner functions and quasi-inner divisors.

CONDITIONAL FORUIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT FOR A VECTOR VALUED CONDITIONING FUNCTION

  • Kim, Bong Jin
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.239-247
    • /
    • 2022
  • Let C0[0, T] denote the Wiener space, the space of continuous functions x(t) on [0, T] such that x(0) = 0. Define a random vector $Z_{\vec{e},k}:C_0[0,\;T] {\rightarrow}{\mathbb{R}}^k$ by $$Z_{\vec{e},k}(x)=({\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;e_1(t)dx(t),\;{\ldots},\;{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^T}\;ek(t)dx(t))$$ where ej ∈ L2[0, T] with ej ≠ 0 a.e., j = 1, …, k. In this paper we study the conditional Fourier-Feynman transform and a conditional convolution product for a cylinder type functionals defined on C0[0, T] with a general vector valued conditioning functions $Z_{\vec{e},k}$ above which need not depend upon the values of x at only finitely many points in (0, T] rather than a conditioning function X(x) = (x(t1), …, x(tn)) where 0 < t1 < … < tn = T. In particular we show that the conditional Fourier-Feynman transform of the conditional convolution product is the product of conditional Fourier-Feynman transforms.

ON C-STIELTJES INTEGRAL OF BANACH-VALVED FUNCTIONS

  • Zhang, Xiaojie;Zhao, Dafang;Ye, Guoju
    • The Pure and Applied Mathematics
    • /
    • v.14 no.2 s.36
    • /
    • pp.71-84
    • /
    • 2007
  • In this paper, we define the C-Stieltjes integral of the functions mapping an interval [a,b] into a Banach space X with respect to g on [a,b], and the C-Stieltjes representable operators for the vector-valued functions which are the generalizations of the Henstock-Stieltjes representable operators. Some properties of the C-Stieltjes operators and the convergence theorems of the C-Stieltjes integral are given.

  • PDF

OPTIMALITY FOR MULTIOBJECTIVE FRACTIONAL VARIATIONAL PROGRAMMING

  • JO, CHEONGLAI;KIM, DOSANG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.59-66
    • /
    • 2000
  • We consider a multiobjective fractional variational programming problem (P) involving vector valued functions. By using the concept of proper efficiency, a relationship between the primal problem and parametric multiobjective variational problem is indicated.

  • PDF

EVALUATION OF SOME CONDITIONAL WIENER INTEGRALS

  • Chang, Kun-Soo;Chang, Joo-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.99-106
    • /
    • 1984
  • J. Yeh has recently introduced the concept of conditional Wiener integrals which are meant specifically the conditional expectation E$^{w}$ (Z vertical bar X) of a real or complex valued Wiener integrable functional Z conditioned by the Wiener measurable functional X on the Wiener measure space (A precise definition of the conditional Wiener integral and a brief discussion of the Wiener measure space are given in Section 2). In [3] and [4] he derived some inversion formulae for conditional Wiener integrals and evaluated some conditional Wiener integrals E$^{w}$ (Z vertical bar X) conditioned by X(x)=x(t) for a fixed t>0 and x in Wiener space. Thus E$^{w}$ (Z vertical bar X) is a real or complex valued function on R$^{1}$. In this paper we shall be concerned with the random vector X given by X(x) = (x(s$_{1}$),..,x(s$_{n}$ )) for every x in Wiener space where 0=s$_{0}$ $_{1}$<..$_{n}$ =t. In Section 3 we will evaluate some conditional Wiener integrals E$^{w}$ (Z vertical bar X) which are real or complex valued functions on the n-dimensional Euclidean space R$^{n}$ . Thus we extend Yeh's results [4] for the random variable X given by X(x)=x(t) to the random vector X given by X(x)=(x(s$_{1}$).., x(s$_{n}$ )).

  • PDF