• Title/Summary/Keyword: vector-matrix method

Search Result 417, Processing Time 0.022 seconds

Acceleration of ECC Computation for Robust Massive Data Reception under GPU-based Embedded Systems (GPU 기반 임베디드 시스템에서 대용량 데이터의 안정적 수신을 위한 ECC 연산의 가속화)

  • Kwon, Jisu;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.956-962
    • /
    • 2020
  • Recently, as the size of data used in an embedded system increases, the need for an ECC decoding operation to robustly receive a massive data is emphasized. In this paper, we propose a method to accelerate the execution of computations that derive syndrome vectors when ECC decoding is performed using Hamming code in an embedded system with a built-in GPU. The proposed acceleration method uses the matrix-vector multiplication of the decoding operation using the CSR format, one of the data structures representing sparse matrix, and is performed in parallel in the CUDA kernel of the GPU. We evaluated the proposed method using a target embedded board with a GPU, and the result shows that the execution time is reduced when ECC decoding operation accelerated based on the GPU than used only CPU.

A PROJECTION ALGORITHM FOR SYMMETRIC EIGENVALUE PROBLEMS

  • PARK, PIL SEONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.5-16
    • /
    • 1999
  • We introduce a new projector for accelerating convergence of a symmetric eigenvalue problem Ax = x, and devise a power/Lanczos hybrid algorithm. Acceleration can be achieved by removing the hard-to-annihilate nonsolution eigencomponents corresponding to the widespread eigenvalues with modulus close to 1, by estimating them accurately using the Lanczos method. However, the additional Lanczos results can be obtained without expensive matrix-vector multiplications but a very small amount of extra work, by utilizing simple power-Lanczos interconversion algorithms suggested. Numerical experiments are given at the end.

  • PDF

JACOBI DISCRETE APPROXIMATION FOR SOLVING OPTIMAL CONTROL PROBLEMS

  • El-Kady, Mamdouh
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.99-112
    • /
    • 2012
  • This paper attempts to present a numerical method for solving optimal control problems. The method is based upon constructing the n-th degree Jacobi polynomials to approximate the control vector and use differentiation matrix to approximate derivative term in the state system. The system dynamics are then converted into system of algebraic equations and hence the optimal control problem is reduced to constrained optimization problem. Numerical examples illustrate the robustness, accuracy and efficiency of the proposed method.

Eigenspace-Based Adaptive Array Robust to Steering Errors By Effective Interference Subspace Estimation (효과적인 간섭 부공간 추정을 통한 조향에러에 강인한 고유공간 기반 적응 어레이)

  • Choi, Yang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.269-277
    • /
    • 2012
  • When there are mismatches between the beamforming steering vector and the array response vector for the desired signal, the performance can be severely degraded as the adaptive array attempts to suppress the desired signal as well as interferences. In this paper, an robust method is proposed for the adaptive array in the presence of both direction errors and random errors in the steering vector. The proposed method first finds a signal-plus-interference subspace (SIS) from the correlation matrix, which in turn is exploited to extract an interference subspace based on the structure of a uniform linear array (ULA), the effect of the desired signal direction vector being reduced as much as possible. Then, the weight vector is attained to be orthogonal to the interference subspace. Simulation shows that the proposed method, in terms of signal-to-interference plus noise ratio (SINR), outperforms existing ones such as the doubly constrained robust Capon beamformer (DCRCB).

Word Sense Similarity Clustering Based on Vector Space Model and HAL (벡터 공간 모델과 HAL에 기초한 단어 의미 유사성 군집)

  • Kim, Dong-Sung
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.3
    • /
    • pp.295-322
    • /
    • 2012
  • In this paper, we cluster similar word senses applying vector space model and HAL (Hyperspace Analog to Language). HAL measures corelation among words through a certain size of context (Lund and Burgess 1996). The similarity measurement between a word pair is cosine similarity based on the vector space model, which reduces distortion of space between high frequency words and low frequency words (Salton et al. 1975, Widdows 2004). We use PCA (Principal Component Analysis) and SVD (Singular Value Decomposition) to reduce a large amount of dimensions caused by similarity matrix. For sense similarity clustering, we adopt supervised and non-supervised learning methods. For non-supervised method, we use clustering. For supervised method, we use SVM (Support Vector Machine), Naive Bayes Classifier, and Maximum Entropy Method.

  • PDF

Image retrieval using block color characteristics and spatial pattern correlation (블록 컬러 특징과 패턴의 공간적 상관성을 이용한 영상 검색)

  • Chae, Seok-Min;Kim, Tae-Su;Kim, Seung-Jin;Lee, Kun-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.9-11
    • /
    • 2005
  • We propose a new content-based image retrieval using a block color co-occurrence matrix (BCCM) and pattern correlogram. In the proposed method, the color feature vectors are extracted by using BCCM that represents the probability of the co-occurrence of two mean colors within blocks. Also the pattern feature vectors are extracted by using pattern correlogram which is combined with spatial correlation of pattern. In the proposed pattern correlogram method. after block-divided image is classified into 48 patterns with respect to the change of the RGB color of the image, joint probability between the same pattern from the surrounding blocks existing at the fixed distance and the center pattern is calculated. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

  • PDF

A New Function Embedding Method for the Multiple-Controlled Unitary Gate based on Literal Switch (리터럴 스위치에 의한 다중제어 유니터리 게이트의 새로운 함수 임베딩 방법)

  • Park, Dong-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.101-108
    • /
    • 2017
  • As the quantum gate matrix is a $r^{n+1}{\times}r^{n+1}$ dimension when the radix is r, the number of control state vectors is n, and the number of target state vectors is one, the matrix dimension with increasing n is exponentially increasing. If the number of control state vectors is $2^n$, then the number of $2^n-1$ unit matrix operations preserves the output from the input, and only one can be performed the unitary operation to the target state vector. Therefore, this paper proposes a new method of function embedding that can replace $2^n-1$ times of unit matrix operations with deterministic contribution to matrix dimension by arithmetic power switch of the unitary gate. The proposed function embedding method uses a binary literal switch with a multivalued threshold, so that a general purpose hybrid MCU gate can be realized in a $r{\times}r$ unitary matrix.

Nearest-Neighbor Collaborative Filtering Using Dimensionality Reduction by Non-negative Matrix Factorization (비부정 행렬 인수분해 차원 감소를 이용한 최근 인접 협력적 여과)

  • Ko, Su-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.13B no.6 s.109
    • /
    • pp.625-632
    • /
    • 2006
  • Collaborative filtering is a technology that aims at teaming predictive models of user preferences. Collaborative filtering systems have succeeded in Ecommerce market but they have shortcomings of high dimensionality and sparsity. In this paper we propose the nearest neighbor collaborative filtering method using non-negative matrix factorization(NNMF). We replace the missing values in the user-item matrix by using the user variance coefficient method as preprocessing for matrix decomposition and apply non-negative factorization to the matrix. The positive decomposition method using the non-negative decomposition represents users as semantic vectors and classifies the users into groups based on semantic relations. We compute the similarity between users by using vector similarity and selects the nearest neighbors based on the similarity. We predict the missing values of items that didn't rate by a new user based on the values that the nearest neighbors rated items.

Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes

  • Kim, Jiyong;Kim, Jungho;Kim, Kyoung-Youm
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1663-1674
    • /
    • 2018
  • We propose the Poynting vector analysis of the air mode in a top-emitting organic light-emitting diode (OLED) by combining the transfer matrix method and dipole source term. The spatial profiles of the time-averaged optical power flow of the air mode are calculated inside and outside the multilayer structure of the OLED with respect to the thickness of the semi-transparent top cathode and capping layer (CPL). We elucidate how the micro-cavity effect controlled by the thickness variation of the semi-transparent top cathode or CPL affects the internal optical power and absorption loss inside the OLED multilayer and the external optical power coupled into the air. When the calculated absorption loss and external power obtained by the proposed Poynting vector and currently-used point dipole models are compared, two calculation results are identical, which demonstrates the validity of the two models.

Improvement of Output Linearity of Matrix Converters with a General R-C Commutation Circuit

  • Choi, Nam-Sup;Li, Yulong;Han, Byung-Moon;Nho, Eui-Cheol;Ko, Jong-Sun
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.232-242
    • /
    • 2009
  • In this paper, a matrix converter with improved low frequency output performance is proposed by achieving a one-step commutation owing to a general commutation circuit applicable to n-phase to m-phase matrix converters. The commutation circuit consists of simple resister and capacitor components, leading to a very stable, reliable and robust operation. Also, it requires no extra sensing information to achieve commutation, allowing for a one-step commutation like a conventional dead time commutation. With the dead time commutation strategy applied, the distortion caused by commutation delay is analyzed and compensated, therefore leading to better output linear behavior. In this paper, detailed commutation procedures of the R-C commutation circuit are analyzed. A selection of specific semiconductor switches and commutation circuit components is also provided. Finally, the effectiveness of the proposed commutation method is verified through a two-phase to single-phase matrix converter and the feasibility of the compensation approach is shown by an open loop space vector modulated three-phase matrix converter with a passive load.