• Title/Summary/Keyword: vector-matrix method

Search Result 417, Processing Time 0.024 seconds

Adaptive Projection Matrix Beamformer for Frequency Hopping Systems Robust to Jamming environment (의도적 간접신호에 강한 주파수 도약 시스템용 적응 투영행렬 빔형성 기법)

  • Jung, Sung-Hun;Shim, Sei-Joon;Kim, Sang-Heon;Lee, Chung-Yong;Youn, Dae-Hee
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.25-32
    • /
    • 2005
  • Frequency hopping system has been adopted to many communication systems in order to overcome the inferior situation such as jamming environment. But typically its processing gain being limited, data interfered by jamming signal could not be fully recovered. This can be enhanced by combing FH system with spatial interference canceller which is a kind of active beamformer In this Paper, we proposed the compensation method of weight vector discrepancy according to the hopped frequencies and the PMBF method which is able to eliminate the inference effectively with less computational complexity. That is, the steering vector of wanted signals can be calculated from the frame without jamming signals using eigen analysis. New projection matrix extracted by the steering vector of wanted signal eliminates the interferences from the covariance matrix of received signal including wanted signal and jamming signals. This PMBF has similar performance of SINR beamformer with less computational complexity.

Explicit Matrix Expressions of Progressive Iterative Approximation

  • Chen, Jie;Wang, Guo-Jin
    • International Journal of CAD/CAM
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Just by adjusting the control points iteratively, progressive iterative approximation (PIA) presents an intuitive and straightforward scheme such that the resulting limit curve (surface) can interpolate the original data points. In order to obtain more flexibility, adjusting only a subset of the control points, a new method called local progressive iterative approximation (LPIA) has also been proposed. But to this day, there are two problems about PIA and LPIA: (1) Only an approximation process is discussed, but the accurate convergence curves (surfaces) are not given. (2) In order to obtain an interpolating curve (surface) with high accuracy, recursion computations are needed time after time, which result in a large workload. To overcome these limitations, this paper gives an explicit matrix expression of the control points of the limit curve (surface) by the PIA or LPIA method, and proves that the column vector consisting of the control points of the PIA's limit curve (or surface) can be obtained by multiplying the column vector consisting of the original data points on the left by the inverse matrix of the collocation matrix (or the Kronecker product of the collocation matrices in two direction) of the blending basis at the parametric values chosen by the original data points. Analogously, the control points of the LPIA's limit curve (or surface) can also be calculated by one-step. Furthermore, the $G^1$ joining conditions between two adjacent limit curves obtained from two neighboring data points sets are derived. Finally, a simple LPIA method is given to make the given tangential conditions at the endpoints can be satisfied by the limit curve.

DATA MINING AND PREDICTION OF SAI TYPE MATRIX PRECONDITIONER

  • Kim, Sang-Bae;Xu, Shuting;Zhang, Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.351-361
    • /
    • 2010
  • The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods are considered the preferred methods. Selecting a suitable preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The prediction of ILU type preconditioners was considered in [27] where support vector machine(SVM), as a data mining technique, is used to classify large sparse linear systems and predict best preconditioners. In this paper, we apply the data mining approach to the sparse approximate inverse(SAI) type preconditioners to find some parameters with which the preconditioned Krylov subspace method on the linear systems shows best performance.

Low-Complexity Massive MIMO Detectors Based on Richardson Method

  • Kang, Byunggi;Yoon, Ji-Hwan;Park, Jongsun
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.326-335
    • /
    • 2017
  • In the uplink transmission of massive (or large-scale) multi-input multi-output (MIMO) systems, large dimensional signal detection and its hardware design are challenging issues owing to the high computational complexity. In this paper, we propose low-complexity hardware architectures of Richardson iterative method-based massive MIMO detectors. We present two types of massive MIMO detectors, directly mapped (type1) and reformulated (type2) Richardson iterative methods. In the proposed Richardson method (type2), the matrix-by-matrix multiplications are reformulated to matrix-vector multiplications, thus reducing the computational complexity from $O(U^2)$ to O(U). Both massive MIMO detectors are implemented using a 65 nm CMOS process and compared in terms of detection performance under different channel conditions (high-mobility and flat fading channels). The hardware implementation results confirm that the proposed type1 Richardson method-based detector demonstrates up to 50% power savings over the proposed type2 detector under a flat fading channel. The type2 detector indicates a 37% power savings compared to the type1 under a high-mobility channel.

The stress analysis of a shear wall with matrix displacement method

  • Ergun, Mustafa;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.205-226
    • /
    • 2015
  • Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

The Kalman Filter Design for the Transfer Alignment by Euler Angle Matching (오일러각 정합방식의 전달정렬 칼만필터 설계)

  • Song, Ki-Won;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1044-1050
    • /
    • 2001
  • This paper presents firstly the method of Euler angle matching designing the transfer alignment using the attitude matching. In this method, the observation directly uses Euler angle difference between MINS and SINS so it needs to describe the rotation vector error to the Euler angle error. The rotation vector error related to the Euler angle error is derive from the direction cosine matrix error equation. The feasibility of the Kalman filter designed for the transfer alignment by Euler angle matching is analyzed by the alignment error results with respect to the roll angle the pitch angle, and the yaw angle matching.

  • PDF

$S^{2}MMSE$ Precoding for Multiuser MIMO Broadcast Channels (다중 사용자 MIMO 방송 채널을 위한 $S^{2}MMSE$ 프리코딩)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1185-1190
    • /
    • 2008
  • In this paper, we propose an simplified successive minimum mean square error ($S^{2}MMSE$) algorithm that can simplify the computational complexity for precoding matrix generation in the successive minimum mean square error (SMMSE) precoding method, which is adopted as a multiuser multiple-input multiple-output (MU-MIMO) precoding technique in the IST (information society technologies)-WINNER (wireless world initiative new radio) project. The original algorithm generates the precoding matrix by calculating all individual precoding vectors with each requiring its own MMSE nulling matrix, over all receive antennas for all users. In contrast, this proposed algorithm first calculates the MMSE nulling matrix for each user, and then calculates all precoding vectors for respective receive antennas of the corresponding user by using the identical MMSE nulling matrix, in which only a simple matrix-vector multiplication is required for each vector. Consequently, it can simplify significantly the computational complexity to generate a precoding matrix for SMMSE precoding.

Structural matrices of a curved-beam element

  • Gimena, F.N.;Gonzaga, P.;Gimena, L.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.307-323
    • /
    • 2009
  • This article presents the differential system that governs the mechanical behaviour of a curved-beam element, with varying cross-section area, subjected to generalized load. This system is solved by an exact procedure or by the application of a new numerical recurrence scheme relating the internal forces and displacements at the two end-points of an increase in its centroid-line. This solution has a transfer matrix structure. Both the stiffness matrix and the equivalent load vector are obtained arranging the transfer matrix. New structural matrices have been defined, which permit to determine directly the unknown values of internal forces and displacements at the two supported ends of the curved-beam element. Examples are included for verification.

The analysis of random effects model by projections (사영에 의한 확률효과모형의 분석)

  • Choi, Jaesung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.31-39
    • /
    • 2015
  • This paper deals with a method for estimating variance components on the basis of projections under the assumption of random effects model. It discusses how to use projections for getting sums of squares to estimate variance components. The use of projections makes the vector subspace generated by the model matrix to be decomposed into subspaces that are orthogonal each other. To partition the vector space by the model matrix stepwise procedure is used. It is shown that the suggested method is useful for obtaining Type I sum of squares requisite for the ANOVA method.

Efficient Speaker Identification based on Robust VQ-PCA (강인한 VQ-PCA에 기반한 효율적인 화자 식별)

  • Lee Ki-Yong
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.57-62
    • /
    • 2004
  • In this paper, an efficient speaker identification based on robust vector quantizationprincipal component analysis (VQ-PCA) is proposed to solve the problems from outliers and high dimensionality of training feature vectors in speaker identification, Firstly, the proposed method partitions the data space into several disjoint regions by roust VQ based on M-estimation. Secondly, the robust PCA is obtained from the covariance matrix in each region. Finally, our method obtains the Gaussian Mixture model (GMM) for speaker from the transformed feature vectors with reduced dimension by the robust PCA in each region, Compared to the conventional GMM with diagonal covariance matrix, under the same performance, the proposed method gives faster results with less storage and, moreover, shows robust performance to outliers.

  • PDF